
Making Nitrogen Work Smarter

Daniel Kindred, ADAS

www.adas.uk

Drivers to improve (reduce) N use

Routes to reduce N requirement

Reduce demand for N in the system

grow crops with low N requirement – species & varieties

Reduce N losses from the system

- cover crops over winter
- fertiliser efficiency & accuracy

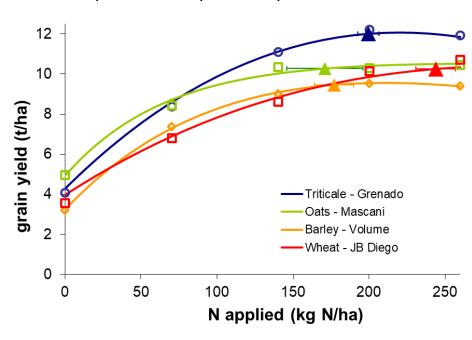
Use available info to judge your N requirement

- Fully account for the N from the soil and manures
- Judge past successes
 - ... grain analysis
 - ... experiment on-farm

Adjust appropriately for the price of N

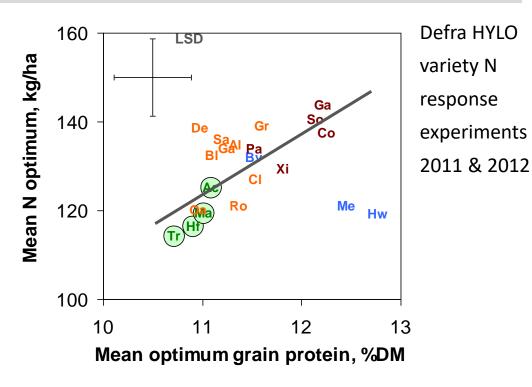
Consider the Opportunity cost

Monitor crops to avoid deficiency and excess



06 December 2021

Grow Low N crops

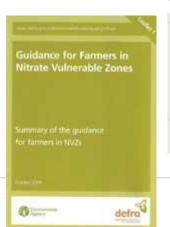

Species N response experiment 2009

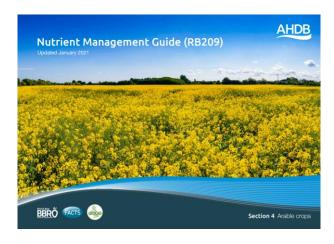
Consider growing triticale, oats or barley rather than wheat?

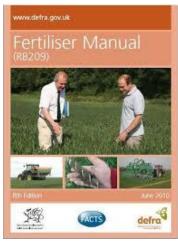
... feed wheat rather than milling wheat?

Peas or beans rather than OSR?

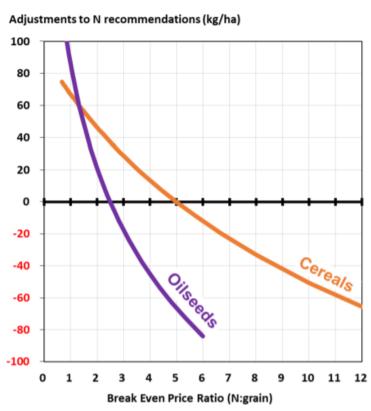
... low protein varieties have lower N requirements (at given yield level)


Breeders beginning to introduce varieties with low-N traits ... eg Limagrain N-Flex OSR


How to decide how much N to buy? ... & then apply?


Economic decision, based on return on investment

- (within NVZ compliance)
- N requirement is the rate that maximises profit
 Recommendations are right on average
- But mask huge variability
- Can be improved with on-farm experience
- Need to adjust for price changes



Adjusting N rates to prices

What price did you buy at?
What is the replacement cost?

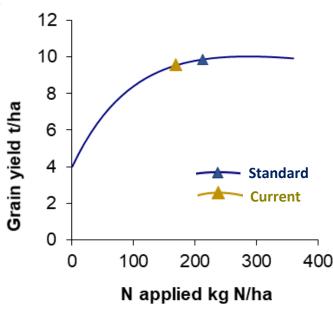
Cereals — deviations from RB209 recommended N rates

Source of N	Fertiliser N content %	Fertiliser Cost £/tonne product								
Ammonium Nitrate	34.50%	£173	£259	£345	£431	£518	£604	£690	£776	£863
Urea	46.00%	£230	£345	£460	£575	£690	£805	£920	£1,035	£1,150
Urea-Ammonium Nitrate Liquid	28.00%	£140	£210	£280	£350	£420	£490	£560	£630	£700
Cost of fertiliser nitrogen	£/kg N	£0.50	£0.75	£1.00	£1.25	£1.50	£1.75	£2.00	£2.25	£2.50
Grain sale price		Change to recommendation for ALL CEREALS								
	£/tonne		kg/ha N							
	100	0	-30	-50	-70	-85	-100	-115	-125	-135
	125	15	-10	-35	-50	-65	-80	-90	-105	-115
decrease	150	25	0	-20	-35	-50	-65	-75	-85	-95
increase	175	30	10	-10	-25	-40	-50	-60	-70	-80
	200	35	15	0	-15	-30	-40	-50	-60	-70
	225	40	25	5	-5	-20	-30	-40	-50	-60
	250	45	30	15	0	-10	-25	-35	-40	-50
	275	50	35	20	5	-5	-15	-25	-35	-45

AHDB report available online...

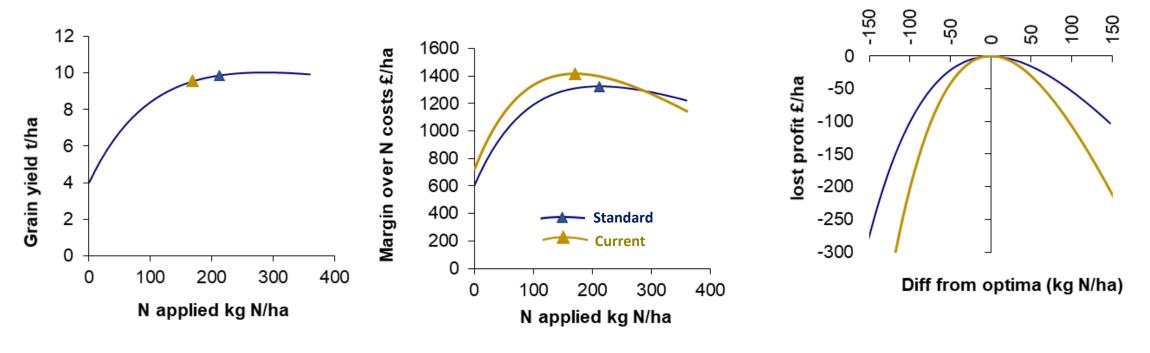
https://ahdb.org.uk/how-best-to-respond-to-costly-fertiliser-nitrogen-for-use-in-2022

Economics of the N response



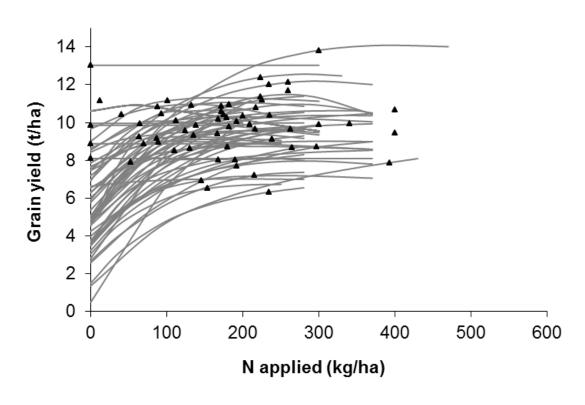
N requirement defined as economic optimum:

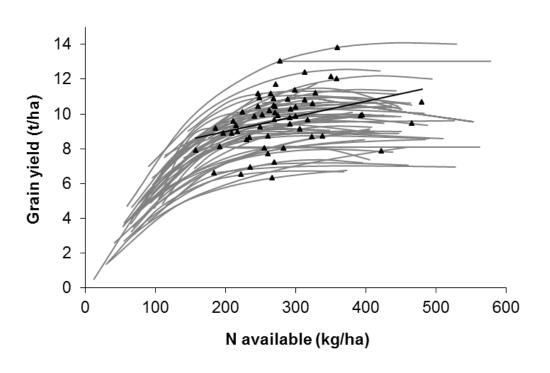
- N rate at which extra kg of N applied isn't paid for by value of additional grain yield Defined by the **Breakeven Ratio (BER)** the kg of grain to pay for 1 kg of fertilizer N...
 - Historically 3:1 (Grain ~£100/t, AN Fertiliser ~£100/t ... £0.3/kg N)
 - Since 2009 5:1 (Grain ~£150/t, AN £260/t)
 - Current ~10:1 (Grain £200/t, AN ~£700/t ... £2/kg N)


Adjustments given in RB209

- ... but rule of thumb reduce N rate by 10kg/ha for each 1 unit increase in BER
- At current prices we should be applying 50 kg N/ha less than last year

Costs of getting N wrong are modest within 50kg N/ha

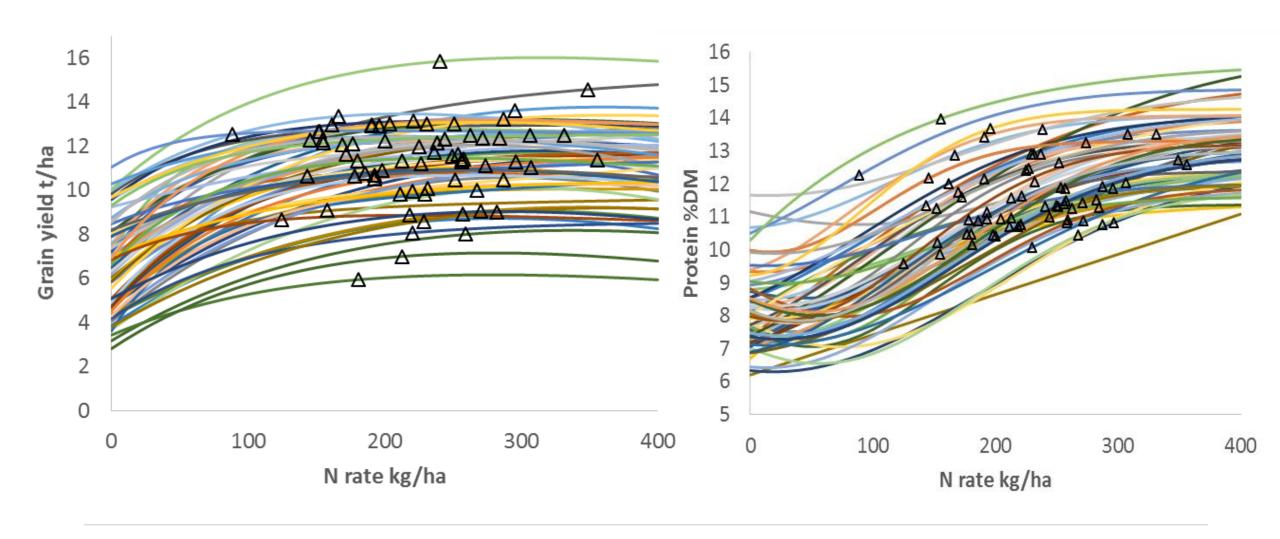

But as we reduce rates and get closer to the shoulder the costs of being wrong increase


... becomes more important to monitor crops to ensure not deficient (... or wasting fertilizer)

At current prices the lost profit from not adjusting N rates (ie sticking to 200kg N/ha rather than ~150kg N/ha) is around £30/ha

Variability in N responses

Main driver is soil N supply


Weak relationship with yield – higher yielding crops warranting more N
But Variation in achieved yields between fields is little to do with N applied
Shape of curves relatively consistent

LearN responses from core sites 2014-2017

Deciding what N rates are right for my farm

Strategic decision – Use **experience** to judge past success to inform future decisions

- Yields, Lodging, misses & overlaps, N offtake & NUE metrics
- Soil Mineral N, organic matter and mineralization measures
- Manures
- Grain analysis grain protein indicates optima (@5:1 BER):
 - 11% for feed wheat
 - 12% for milling
- Test different N rates on farm
 - Apply 50kg N/ha more or less in alternate tramlines

Make the most of muck

Nutrient value of

Cattle FYM now £11/t ... £450/ha @ 40 t/ha
Pig Slurry now worth £6/t ... £300/ha @ 50m3/ha

		Cattle manur	e '	Pig slurry (4% DM)		
	kg/ha	£/t	£/ha	kg/ha	£/t	£/ha
Crop available N	24	0.87	35	99	2.87	144
Total phosphate	128	3.51	141	75	1.65	82
Total potash	376	6.89	276	* 110	1.61	81
Total £		11.28	451		6.13	307

Slurry bandspreading / shallow injection reduces ammonia losses and odour nuisance

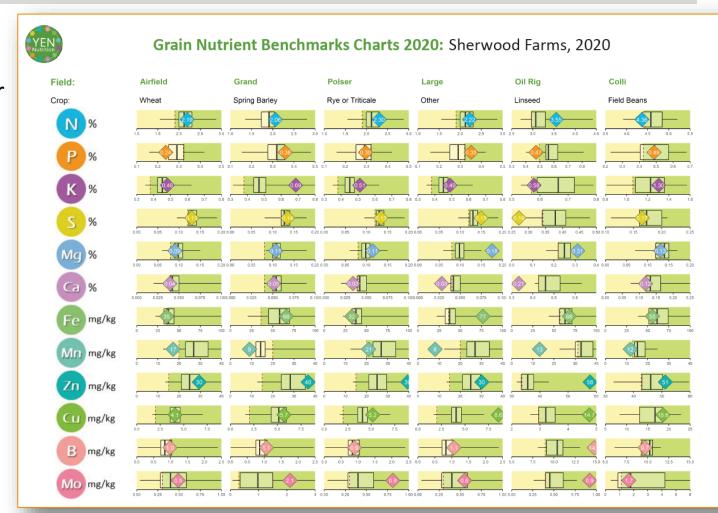
Allows application to growing crop

increases N uptake.

YEN Nutrition

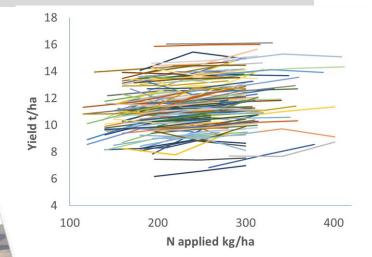
- Service to benchmark grain nutrients

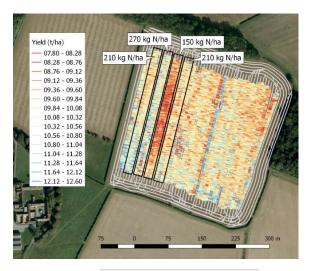
Benchmark crops for 12 Nutrients


- Shared soil & input data to learn together
- Know your nutrition, identify deficiencies
- Calculate Offtakes & Nutrient Balances

Find out more at www.yen.adas.co.uk

Launching **Crop Nutrition Clubs** to discuss results and test rates & solutions on-farm


Test N decisions on farm – tramline trials



AHDB **LearN** Project 2014-2017 demonstrated the value of on-farm comparisons

- Simple tests of +/- 60 kg N/ha on alternate tramlines
- Obtained yields from yield maps ... & protein
- Overall LearN farmers getting N about right
- With reduced N rates, treatment comparisons can give useful visual indications of N status
- Developing tools to support the management of onfarm trials in Farm-PEP project

Agronomics

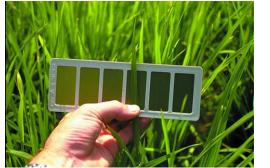
Sensing & testing in season

Lots of sensors & technologies provide relevant data

How to integrate into N decision making?

In early spring – the crop an assay of available soil N?

Account for crop N – could be worth £300/ha in OSR!


Later – use sensors to check N status

where are we on shoulder of the curve?

Visual check - simple approach can be effective

... Especially if combined with high / low strips

Measuring and accounting for Crop N

Each unit of Green Area Index in OSR contains 50kg N/ha

- That N is in the crop & doesn't need to come from fert
 - Even if frosted off ... though not if taken by pigeons!
 - Many OSR crops already contain £300/ha worth of N!

How to measure GAI / N uptake?

Digital photo for GAIs of up to 2.5

• Use phone apps e.g. the BASF GAI Tool app

Crop fresh weight for GAIs above 2.5

- Record fresh weight in kg of 1m x 1m area
- Multiply by 0.8 to give GAI

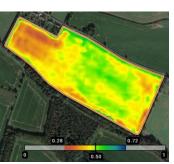
Fraction of soil covered by crop

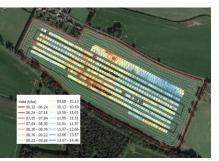
Ground cover	GAI	Kg N/ha		
1/3	0.5	25		
1/2	1.0	20		
3/4	2.0	100		

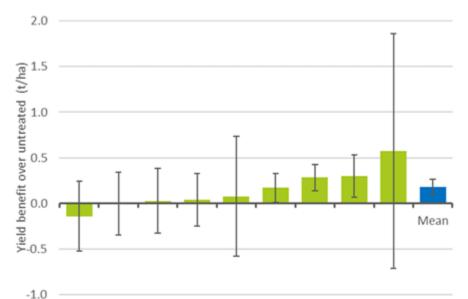
Absolute Calibrations from Sensors

Consider using N efficiency products

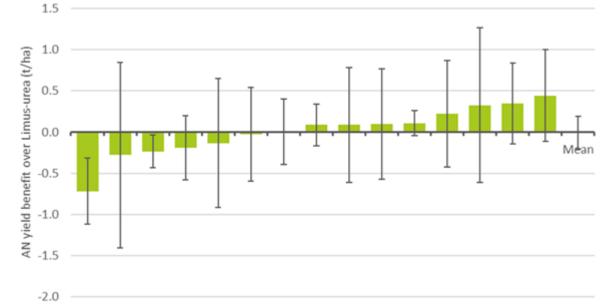
Туре	Effect	Active Ingredients	Example Products
Nitrification Inhibitors	Slow conversion ammonium to nitrate Reduce N ₂ O emissions Can reduce nitrate leaching	2-chloro-6-(trichloromethyl-pyridine) Dicyandiamide (DCD) 3,4-dimethylpyrazole	N-Lock® - Corteva Didin – Omex ENTEC® - Origin Vizura® - BASF
Urease Inhibitors	Slow conversion urea to ammonium Reduce Ammonia losses Improve efficiency of urea & UAN	nBTPT 1,2,4-triazole (2-NPT) NBTPT & NPPT	SUSTAIN® (Agrotain®) — Origin YaraVera Amiplus® - Yara Piagran Pro® - SKW Piesteritz Limus® BASF
NI & UI	As above	MPA & 2-NPT DCD & ammonium thiosulphate	Alzon-neo-N® SKW Piesteritz Didin® - Omex
Slow or Control release	Physical or chemical barriers to release of nitrogen	Polymer Coated Polymers	Nutrisphere®, Origin Enhanced-N® Efficie-N-t 28® Agrovital


Also wide range of Biostimulants, Microbial and Foliar products – Recommend you test on-farm before committing Defra review into Enhanced Efficiency Fertilisers – reporting spring 2022


On-farm Urease Inhibitor trials on Urea & UAN



With UAN Limus Clear increased yield by 0.16 t/ha \pm 0.10


BASF study of Limus on 9 UAN trials and 15 urea trials from 2019 to 2021

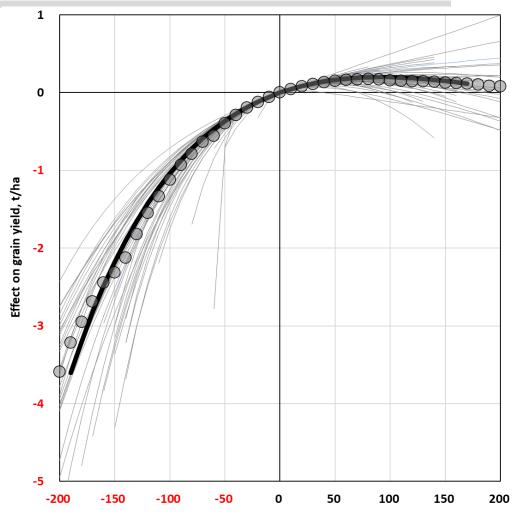
analysed by ADAS Agronomics

Limus-urea gave equivalent yields to AN (+0.02 t/ha \pm 0.16)

06 December 2021 21

Reframing our attitude to N rates?

Consider the return on investment from the last 10, 20, 30, 40 kg N /ha.


- No question about the value of the first 100 kg N/ha
 - Increases yield by ~2-4 t/ha

Appreciate the flatness of the response curve

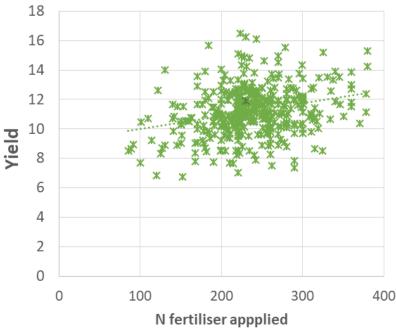
 differences in yield and gross margin from applying 50kg N/ha more or less are modest

Value from final portion of fertilizer N at 'old' prices:

Final portion Kg N/ha	Yield gained t/ha	N cost £/ha	Yield value gained £/ha	Increased margin £/ha
10	0.06	£7	£8	£0.69
20	0.12	£14	£17	£2.93
30	0.19	£22	£28	£6.87
40	0.28	£29	£42	£12.69

Difference in N applied from the optimum at BER 5:1, kg/ha

Conclusions



Don't be too afraid to cut N rates back

- Applying high N rates isn't what gives high yields
 - Variation in yield mostly not due to variability in N applied
- Use a range of tools to assess whether past N rates were right
 - Grain Analysis YEN Nutrition
 - Experiment on-farm
- At lower N rates more care needed to track N status
 - Value from sensing tools ... & visual comparisons
- Pressure from high N fertiliser price requires same solutions as responding to its high carbon / GHG price

Thank you ... Questions?

www.yen.adas.co.uk www.farmpep.net

