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Abstract:  

 

Four multi-site datasets with 188 to 14,155 wheat yields from the UK showed two- to 

five-fold variation. This was partitioned using REML into predictable and unpredictable 

effects, with the latter being ostensibly associated with season (year), and exceeding 

predictable variation. Of the predictable factors, ‘farm’ accounted for most variation in 

each case. Effects of variety choice and other husbandry factors were small. Some of the 

farm x season variation must have arisen from inter- and intra-field variation as well as 

from interactions with season; however, the extent of farm-scale variation suggests that 

progress in yield enhancement must come through research at farm-scale, to understand 

farmers’ attitudes and designs, as well as their soils, environments and husbandry.  
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Introduction:  

 

Progress in crop productivity at national (UK), regional (Europe) and indeed global scales 

falls far short of the rate required to sustain the global population trajectory (>2%/year; 

Ray et al., 2013). Yet estimates of potential crop yields (Foulkes et al., 2009) and farmers’ 

best yields (Kindred & Sylvester-Bradley, 2019) both indicate ample scope for yield 

enhancement. Much store is placed by electorates, governments and crop technologists in 

digitally-facilitated ‘precision agriculture’ to effect crop yield enhancement, hence food 

security (NASEM, 2018; Gove, 2018). However, the precision of husbandry decisions is 

not, of itself, an obvious precursor of higher yields; evidence that fine variations in 

husbandry elicit significant yield enhancements is unconvincing (e.g. Kindred et al., 

2018). So how could precision agriculture bring a resumption of crop yield enhancement 

in the many global regions where yields have stagnated? The hypothesis explored here is 

that most controllable yield variation occurs at farm- and field-scale. If this is shown to 

be true, the main value in precision technologies might be in using them to analyse, 

understand and prove farm-specific differences; it would seem that digitally-enabled 

field-scale experiments (Sylvester-Bradley et al., 2018) could reveal to each farm its 

bespoke best practices and system designs.  

Several initiatives to enable and develop ‘farmer-centric research’ are now emerging 

(Cook et al., 2013; EU, 2017; Macmillan & Benton, 2014; Sylvester-Bradley et al., 

2018), driven by the assumption that development of crop husbandry to increase crop 

yields must make fastest progress if research is ‘up-scaled’ such that the scale of yield 

comparisons becomes similar to that at which most variation arises, particularly 

anthropogenic variation. Perhaps inevitably, farmers themselves appear to be responsible 

for making the most influential decisions on crop yields. However, in designing their 

individual farming systems and imposing their design decisions across whole farms, most 
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farmers confound multiple husbandry choices. So simple analyses of associations 

between husbandry and crop performance at the farm scale can prove problematic and 

inconclusive; experimentation is needed. It is thus important to assess the scale at which 

agronomic research and experimentation should focus. This paper reports an initial 

attempt at estimating how the evidently large variability in crop yields is partitioned 

between husbandry factors and across spatial scales. For this initial exercise, the data used 

were those that describe yields of wheat in the UK and were easily available to the 

authors. Analyses embrace temporal variation, but this is largely used to provide 

replication of spatial effects; temporal trends are not considered here.  

 

Data Sources 

 

Four separate datasets were collated describing annual yields of winter wheat in the UK 

during the past 17 growing seasons (identified by their harvest years). Spatial scales of 

individual yield values in these four datasets ranged from 50 m2 to whole tramlines, whole 

fields or many farms (Table 1).  

 

Table 1. Structure of multi-site datasets describing field yields of wheat in the UK. Note 

some yield values had missing explanatory data.  

Dataset:   RL LearN YEN Defra 

census 

Spatial unit >45 m2 > 0.2 ha >2 ha multi-farm 

Harvest years, AD 2002-2018 2014-2017 2013-2018 1999-2017 

Regions1 7 6 102 113 

Counties 28 12 40 NA 

Farms 168 17 1233 NA 

Varieties 1184 175 525 NA 

No. yield values 14,155 575 587 209 
1 AHDB, 2015 2 as AHDB but incl. 3 non-UK 3 Defra, 2017 
4 with >60 yield values 5 with >1 yield value  

 

None of the datasets was originally created to study spatial variation; all datasets included 

missing information and combinations of spatial units and levels of husbandry factors 

were often incompletely represented. The datasets, with their strengths and weaknesses, 

were as follows:   

 

(i) RL (Recommended List; AHDB, 2018): Approximately 17,500 yields, each being 

an average of three replicate plots totalling ~50 m2 of a common variety from each 

of 477 trials conducted in all harvest years between 2002 and 2018. The trials were 

sited on ~28 well-managed farms per year in wheat-growing regions throughout the 

UK. Trials were managed by the AHDB or their agents according to a common 

protocol each comparing 26-54 (mean 37) varieties to inform variety 

recommendations and choice. The standard protocol for and data from these trials 

are publically available via the AHDB website (2015; 2018). The main strengths of 

this dataset were in its size, hence likely capacity to show multiple effects, its full 

representation of all UK regions, its standard methodology, and the extent of genetic 

variation that it addressed. Shortcomings of this dataset were that some soil and 
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husbandry details were not recorded in the early years, varieties changed gradually 

over seasons, and some farms differed between seasons. To meet the capacity of the 

analytical software, varieties with less than 60 yield values were omitted from the 

analysis, reducing the dataset size to 14,155 yields.  

(ii) LearN: ~580 yields were obtained from farmers’ tramline trials, set up to compare 

effects of different rates of fertiliser nitrogen (N) (Kindred et al., 2018). Yields here 

were from each of four tramlines per field (~0.2 ha), two treated with the farmer’s 

standard rate of N (ranging from 174 to 352 kg ha-1), one treated with 60 kg ha-1 less 

and the other treated with 60 kg ha-1 more. Three tramline trials were conducted on 

each of about 16 farms in each year over the four harvest years from 2014 to 2017. 

Farms were selected from 55 candidates, avoiding those with much organic manure 

use, to provide groups representing land of different soil types across England. The 

main strengths of this dataset were its inclusion of the same farms over seasons, 

inclusion of more than one field per farm and season, hence the ability to test for 

farm and field effects, and intra-field variation, and effects of N fertiliser. 

Shortcomings of this dataset were the omission of the AHDB’s West region, partial 

confounding of variety choice and manure use with farm, and determination of yields 

using monitors on harvesters (which may not have been well calibrated).  

(iii) YEN: 587 yields were collated from farmers’ entries in the Yield Enhancement 

Network’s competitions in harvests 2013 through to 2018 (Sylvester-Bradley & 

Kindred, 2014). Each yield was from an area exceeding 2 ha and often from a whole 

field; mean area per entry was 15 ha. Fields and husbandry treatments were chosen 

by the farmers, according to their own experience and advice, usually to represent 

the best yields from their farm, but sometimes to represent typical yields. Strengths 

of this dataset were its wide geographical range, representation of real farming 

conditions, and trustworthy yields (all were from a weigh-bridge and witnessed). 

Shortcomings of this dataset were in the proportion of husbandry data missing, and 

the limited number of fields and seasons per farm (Table 1). 

(iv) Defra: 188 average regional yields were derived from the government census of UK 

agriculture (Defra, 2018) for harvests between 1999 and 2017; data are routinely 

collated from ~30,000 farms according to a standard methodology (Defra, 2017) but 

the smallest production unit of published data is a region; individual farm yields are 

not published. The majority (>98% by area) of wheat grown in the UK is sown in the 

autumn but these national and regional yields include small areas of spring-sown 

wheat. This dataset described all UK farms, whereas the other datasets were restricted 

to farms and farmers engaged with the research community. This dataset was 

included to compare regional with seasonal variation; clearly it lacks any fine-scale 

information, so could only be used for this one purpose.  

 

These datasets were analysed using the REML directive in Genstat (Payne et al., 2017) 

to assess the predominant factors contributing to the variation in yield. Each factor in the 

analysis was included as a random, rather than a fixed term. The term ‘region’ was 

consistent between RL, LearN and YEN datasets, except that YEN data included three 

additional non-UK regions (Ireland; the Netherlands, and Other); regions in the Defra 

dataset employed similar sized but slightly different divisions to AHDB regions (Defra, 

2017).  
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Results 

 

All seasons represented in these datasets post-dated the commencement of ‘yield 

stagnation’ in the UK (Knight et al., 2012) so, although significant seasonal variation was 

evident, with lowest yields in 2012 and highest yields in 2015, Defra and RL data showed 

no significant linear trends through successive seasons (Fig. 1), and the other datasets 

were too short to detect linear trends. Mean yield in the Defra dataset was 7.6 t ha-1, 

compared to 10.4 to 11.4 t ha-1 in datasets which arose from trials and research-centric 

farms (Table 2).  

 

Figure 1. Seasonal yield variation in the Defra (open circles) and RL (closed triangles) 

datasets. The phase of increasing yields from 1971 is shown for the Defra 

dataset (no symbol) but was not included in the analyses here.  

Table 2. Summary of variation in wheat yields within UK multi-site datasets.  

  RL LearN YEN Defra 

census 

Mean yield, t ha-1 10.40 11.43 10.74 7.57 

SD, t ha-1   1.82   1.77   1.88 0.84 

Max. yield, t ha-1 18.62 16.07 16.50 9.33 

Min. yield, t ha-1   3.45   6.56   5.01 4.97 

 

Yield variation in the Defra dataset was significantly less than in the other datasets 

(Table 2) because of the much larger crop area represented by each value, and the much 

more numerous source data from which these values were derived. Variation in the other 

datasets was larger and similar; the range was largest in the RL dataset probably due to 

the much greater quantity of data. At least a 3-fold range in yield occurred within each of 

these datasets, with maxima being more than double the national average of 7.6 t ha-1 and 

similar to the world record wheat yield of 16.8 t ha-1 harvested in New Zealand in 2017 

(Guinness World Records, 2017). This degree of variation appeared to offer ample scope 

for analysis and attribution to different scales and causes.  
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Inclusion of the Defra dataset, whilst adding nothing on farm and husbandry effects, 

allowed a precise assessment of regional effects, with yields in the east and north (8.0 

t ha-1) exceeding those in the west and south by 0.9 t ha-1; regional effects were not so 

clear in the more detailed datasets (Table 3) and although county-level effects may have 

masked regional effects, county comparisons were not included in analyses here because 

there were insufficient farms within counties to support separate assessments.  

Variation in the three detailed datasets was initially partitioned between factors 

considered to be unpredictable (i.e. variation involving season, plus residual variation) 

and factors that are explicable and predictable, or might become so through further 

research (Table 3). In all datasets, and particularly in the RL, unpredictable variation 

exceeded predictable variation. Given that there was no systematic replication within any 

dataset, residual variation was generally small, being comprised of interactions other than 

those explicitly identified, so season and its interactions with farm and region were largely 

responsible for the unpredictable yield variation. The origin of this must be not only real 

interactions with season but also intra-farm spatial variation at field and sub-field scales, 

especially in the RL where yield values arose from only ~50 m2 land. 

 

Table 3. Proportions (V) of total variance attributed by REML analysis to a range of 

predictable spatial, agronomic and genetic factors, and to unpredictable (seasonal and 

residual) effects in four datasets describing UK wheat yields. SE: standard error. NA: 

factors not included in the analysis.  

Dataset AHDB RL LearN YEN Defra 
 V SE V SE V SE V SE 

Predictable         

Region 0.01 0.02 0.00  0.01 0.04 0.49 0.22 

Farm (= site) 0.11 0.04 0.22 0.13 0.24 0.07 NA  

Field  NA  0.12 0.06 NA  NA  

Soil type  0.00 0.01 0.00  0.11 0.08 NA  

Previous crop  0.09 0.05 0.02 0.03 0.06 0.04 NA  

Manure use  NA  0.04 0.05 0.01 0.01 NA  

Variety  0.04 0.01 0.03 0.04 0.00  NA  

Variety x Region  0.00 0.00 NA  NA  NA  

Variety x Farm  0.01 0.00 NA  NA  NA  

Fertiliser N1  NA  0.02 0.02 0.00  NA  

Unpredictable         

Season (= year) 0.11 0.05 0.22 0.20 0.19 0.13 0.33 0.11 

Season x Region  0.05 0.03 0.00  0.00  0.18 0.02 

Season x Farm  0.56 0.05 0.17 0.07 0.09 0.06 NA  

Season x Other  0.01 0.00 0.10 0.05 0.01 0.01 NA  

Residual  0.01 0.00 0.06 0.01 0.28 0.13 NA  

Total  1.00  1.00  1.00  1.00  

1 N policy for LearN (low, normal, high); 50 kg/ha N groups for YEN 

 

The RL dataset was much the largest and so offered most scope to assess the 

importance of explanatory factors, but in all three datasets ‘farm’ contributed most to the 

predictable variation (Table 3). In the RL dataset, farm differences contributed 11% of 

the total variance. Of the farms represented in four or more seasons within the RL dataset, 

the range of mean yields was from 8.5 to 12.5 t ha-1, and the average SD for these sites 
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was 1.48 t ha-1. Thus, whilst the farm effect was not immediately evident when comparing 

yields from small parts of individual fields, it nevertheless proved to account for the 

largest proportion of predictable variance.  

Previous crop was significant in the RL dataset, and more important than soil type 

whereas soil type was more important in the YEN dataset. Variety was a significant factor 

in the RL & LearN datasets but accounted for only ~4% of total yield variance. Variety 

was not significant in YEN. The LearN dataset provided replication across tramlines 

within fields and fields within farms and hence enabled a more precise assessment of 

effects at farm and sub-farm spatial scales. Both proved important, with the field effect 

being more certain. Surprisingly, in the LearN dataset, although there were effects of 

fertiliser N in all tramline trials (Kindred et al., 2018), the contribution of N fertiliser 

treatments to total variance was very small compared to the effects of farm and the large 

but uncertain effects of season.   

As with the RL and the LearN datasets, the effect of farm in the YEN dataset proved 

as large and relatively more consistent than any other factor examined. There were 123 

farms with repeat entries; only 19 of these were responsible for more than 3 entries, and 

the definition of a farm in the YEN database was more uncertain than in the other datasets. 

Husbandry factors did not account for significant proportions of the variance in this 

analysis although analysing factors as fixed effects did show significant associations of 

yield with soil type, previous crop, fertiliser P, fertiliser N, fungicide use, frequency of 

plant growth regulator use, use of slurry and form of fertiliser N (Kindred & Sylvester-

Bradley, 2019).  

 

Discussion 

 

There is no need for an exhaustive study to reveal how much crop yields vary; farmers, 

all those that supply them, and all those that they supply, are eminently aware of the 

extreme variation in crop yields, even in the UK where serious droughts are infrequent. 

It is an indictment of the farming and crop science industries that much of this variation 

still remains unrecorded, unanalysed and unexplained. The apparent dependence of yields 

on seasonal weather, and the focus of research at finer scales, have contrived to thwart 

the clear assessment, analysis and attribution of yield variation between predictable and 

unpredictable factors and between different spatial scales, as well as between wide 

ranging husbandry practices.  

All datasets examined here included good representation across regions, and 

husbandry effects were well represented, yet it is evident that a farm effect was very 

influential. This was despite farming factors such as soil type, rotation, manure use, 

varietal choice and fertiliser N use being extracted separately. Of course, intra-field yield 

variation is also often large, and it is a moot point which of farm-scale or field-scale 

variation is likely to be the more tractable through research investment. Research into 

farm effects tends to be problematic because experimentation is difficult, whilst research 

into variable rates of nutrients or seeds has shown how difficult it is to counteract inherent 

intra-field variation with single inputs (e.g. Kindred et al., 2017). Since yield is a multi-

faceted variable, it is likely that future research must go beyond simple conventional 

considerations of crop genetics, establishment, nutrition and protection. The findings here 

indicate that farmers’ systems, designs and attitudes must be examined for their 

influences on yield, as well as research at different spatial scales, so that the combinations 

of factors that account for most of the variation can be identified. Precision Farming 
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technologies are developing apace and, with networks of researchers and farmers working 

to a common cause, many of these can now be harnessed to facilitate research across 

scales (Sylvester-Bradley et al., 2018; Marchant et al., 2018).  

Much of the yield variation in all datasets examined in this exploratory study 

originated at scales of a field or larger. Much larger datasets are now available from farm 

harvesters so, if calibration and analytical issues can be overcome (e.g. Muhammed et al., 

2016) and allow robust inter-farm comparisons, further data analyses are justified to 

validate the primary scales and patterns of yield variation. Clearly, in further analyses, it 

will be important to recognise that farm differences may be as much due to differences 

between farmers, their skills, attitudes, motivations and behaviours, as they are due to 

physical farm differences (e.g. machinery, soils & weather). If the findings here are 

confirmed, great potential for yield progress should arise through better understanding of 

farm or farmer-mediated effects on crop productivity. 

 

Conclusions 

 

Given the urgency of increasing food production and the apparent extent of field, farm 

and farmer effects on crop productivity, compared to say genetic variation, there is a 

strong case for transferring substantial investments into farmer-centric research. It should 

be noted that research using conventional small plots is inherently unable to test 

hypotheses that might explain inter-farm, inter-field and inter-management zone yield 

effects. It will therefore be important to continue with development of organisations, 

methodologies and technologies that enable and facilitate research and experimentation 

at larger scales. The strong influence of ‘farm’ indicates that these should include analysis 

and testing of social and behavioural issues as well as physical contrasts. Farmer-centric 

research has great potential and is required urgently.  
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