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Executive Summary 

Analysis of the drivers of yield 
This work represents an initial exploration of fusing several large-scale datasets relating to UK 

agricultural practice to examine the drivers of farm level yields of focal crops. The following datasets 

were identified for combination, as relevant to understanding crop yields in the UK: 

• FERA pesticide usage survey (PUS) aggregated to a farm level 

• June farm survey 

• DEFRA crop pest survey 

• Weather data from the Meteorological office 

• Soil type information from the National Soil Map 

• Annual economic information from the John Nix farm management pocketbook 

Datasets were combined for the biennial period between 2000 and 2010, based on the associated 

labelling information and geolocation via the June survey. The combined data represents an analytical 

dataset through which the potential drivers of winter wheats and oilseed rape (OSR) could be 

examined.  

The analytical approach undertaken combines parametric statistical analysis with the use of high- 

flexibility machine learning techniques (Random Forest) to provide hypothesis-driven and heuristic 

approaches to revealing the key factors that may be used to predict yield. We defined a core feature 

set (a limited number of factors that we expected to be important based on existing literature), and a 

set of expanded features (i.e. all the relevant variables within the study). We undertook statistical 

hypothesis testing on the core feature set, with machine learning to describe the potential shapes and 

observed importance of the identified significant drivers. Machine learning was also used to explore 

the expanded feature set to identify factors that may have been missed in the definition of the core 

set and which might warrant further investigation into their impacts on yield.  

Wheat varieties were divided into two categories (bread wheats and feed wheats) based on the 

grouping system provided by the National Association of British and Irish Flour Millers (“nabim”). For 

bread wheats, the most important predictors from core features set include 

• the major variety on the holding,  

• the area of the holding (larger holdings having higher yield),  

• proportion of own seed used (lower yields for more own seed),  

• increased yields under dry conditions during the pre-frost period (July to December of the 

year prior to harvest),  

• number of unique active compounds applied, and total mass of pesticide associated with the 

holding (both having positive effects on yield). 

Machine learning using the expanded feature set reinforced these conclusions. In addition, a strong 

positive signal associated with the application of growth regulators was observed. In machine learning 

a stepwise relationship between the yield and the number of compounds was observed: applying 12 

or more active compounds was associated with a step up in expected yields. 

Different factors were associated with yield change in feed wheats compared with bread wheats:  

• The strongest yield effect was associated with by diversity of applied compounds (positive 

effect); 

• conditions during the pre-frost period (low rainfall and high humidity being associated with 

increased yield); 
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• small effect of the number of spray rounds conducted replacing the effect of total pesticide 

load (positive effect) 

• an absence of clear effects associated with primary variety 

Machine learning analysis of the complete feature set gave, in common with bread wheat, an 

observation that growth regulators are associated with yields. The recorded proportion of land set 

aside as grassland was also highlighted for further investigation. 

For OSR the key drivers in the statistical analysis include, the diversity of compounds applied and the 

year of sampling ( overall upward trend in yields during the period, with lower values reported in 2004 

and 2008 )By far the largest and most important identified driver was latitude, with a noticeable 

stepped effect of increasing yield north of the 52 degrees north (approximately the latitude of 

Ipswich). The causes of this are unclear and may relate to the distribution of economically important 

pest species. This interpretation is reinforced by analysis of the expanded feature set which also 

revealed the quantity of fungicide applied on a holding as a key determinate of yields in OSR crops. 

The applied modelling indicated large amounts of (apparently) random variation in yields which could 

not be accounted within the fitted functions. This is likely the result of a combination of intrinsic noise 

in the combined datasets, and limited predictive power in the included variables. Confirmatory studies 

are advised to further investigate the effects identified and their impacts on crop yield across holdings. 

We found that, for all three crops, there was a potential sub-population of unusually low-yielding sites 

compared with their predicted yield. These might represent either unidentified failed crops (with 

resulting differences in farmer behaviour) or holdings where there are specific socio-economic factors 

which are associated with reduced yield values (e.g. failure to incorporate innovation). None of the 

examined drivers, including the expanded feature set, showed useful correlation with the observation 

of low yield suggesting a role for other potential drivers outside of the scope of this analysis. 

In conclusion, our results suggest that diversity of agrochemical inputs is a key component of observed 

landscape level yields in both wheats and OSR. We also show that climatic conditions during the 

growth year are key predictors for wheat while OSR appears largely driven by latitude. A less 

consistent effect of total pesticide load is estimated (positive in bread wheats, non-significant for feed 

wheats, and negative for OSR). We didn’t find evidence of a relation between soil types or disease 

prevalence and yield. This may be because our measures of disease prevalence were not suitable for 

finding a relationship. The use of growth regulators in wheats and fungicides in OSR were identified 

for potential further study particularly in the context of standardised field trials.  

  



 

6 
 

Recommendations for future work 
The modelling conducted here is preliminary and subject to constraints relating to the content and 

structure of the underlying datasets. Areas of concern include the representativeness of the yield data 

available in the PUS (many farms do not provide yield estimates and the remainder may not be fully 

representative of variation across the UK), as well as the representation of some of the variables, 

particularly for soil type and disease prevalence (which were subject to sampling and aggregation 

constraints within this study). Some of these issues could be minimised by combining similar analytical 

approaches with data from standardised plots such as those run by the AHDB for variety level yield 

assessment. These static sites, with standardised input regimes across years, may help in 

characterising the abiotic components of crop yield (e.g. weather, soil type and latitude).  

Modelling the sub-population of low yielding sites discussed above, remains an outstanding challenge 

for statistical analysis. Hurdle modelling, based on whether localities achieved a commercially viable 

yield, or similar techniques, may help to refine the models fitted here.  

Alternatively, increased understanding of how this population might be characterised, e.g. based on 

socio-economic factors, may provide insight into how they should be represented in any future 

modelling and the consequences for policy decisions around yield 

This work highlights the opportunities and challenges that arise from combining related datasets in 

the agrarian sector. We provide a framework and discussion relating to the overlapping use of 

statistical and machine learning based techniques in the context of the numeric analysis of fused 

datasets. To summarise, statistical procedures are based on an explicit model of the system under 

study, that are dependent on knowledge regarding the relation between the studied factors and the 

way in which observations may vary. This provides greater power and interpretability when testing 

hypotheses about the workings of the system, where the model is judged to be adequate.  

The flexibility of machine learnings makes it better able to reflect complex relationships that may be 

present within data (e.g. for forecasting future states) and which may reflect system processes. 

However, this same flexibility can lead to over reliance on random variation in the data used to fit the 

function and undermine the generality of the resulting model. These contrasting strengths represent 

important considerations in how methods are to be used in numeric analyses, and how to structure 

similar studies in other relevant policy areas.  
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1. Background 
Crop yields are one of the key measures within agrarian systems and have been widely studied in a 

range of contexts, particularly in relation to food security and changes in policy frameworks. While 

considerable work has focused on overall trends in yields, information relating to specific holdings and 

the meso-scale processes that generate yields is often highly fragmented, with limited attention given 

to understanding common processes and factors that may be associated with high yielding holdings 

(1). In this study we examine yield values for the most important grain and fodder crop within the UK, 

winter wheat, and its primary break crop, oilseed rape (henceforth OSR). Our focus is on yields during 

2000 to 2010 based on biennial yield data collected as part of the arable pesticide usage survey 

(conducted every two years by FERA on behalf of the Chemicals Regulation Division). The aim will be 

to explore farm-level factors associated with yield values in these key products based on broadscale 

standardised datasets. The aim is to explore both how combining data sets improves understanding 

of yield drivers and to identify possible policy areas which may warrant further analysis in the context 

of the UK agricultural system.  

Aggregated wheat yields across the UK are associated with a series of well publicised trends over 

recent decades. Following significant technological and variety improvements in the 70’s and early 

80’s a gradual upward trend in year on year improvements in wheats yields was observed up to the 

mid 90’s followed by a long term plateau up-to at least 2011 (2)1. The causes for this relative stasis are 

incompletely understood. Evidence suggests a mix of agronomic effects particularly around nutrition 

and fertiliser usage, trends towards earlier sowing and reduced tillage, as well as various weather 

related impacts may collectively offset the increased potential of new varieties as they enter the 

market (2, 3). Comparisons across Europe indicate a non-linear response in yields of winter wheats to 

seasonal temperature variation (4). Recently there has also been discussion of the impacts of climate 

change, with a particular emphasis on the role of CO2 fertilisation, and concerns around the impacts 

of summer drought (5, 6).  

Over the same period, OSR yields underwent a notable decline during the late 80s to early 90s before 

stabilising and trending upwards since around 2002. This pattern has been attributed to changes in 

agronomy (particularly the use of sulphur fertilisers) and a limited uptake in high yielding varieties 

prior to the early 2000’s (2) This periods is also associated with notable increases in typical pesticide 

inputs associated with OSR and the transition towards being considered an intensively treated crop. 

Recent work has also strongly indicated an impact of early winter temperatures on OSR yield which 

may also contribute to these longer term trends (7). However, the specific relations in the UK remain 

unclear and there is limited discussion of farm level variation.  

While these reviews discuss various causes of the trends in the overall yields in the focal crops, 

information on between-farm variation and its potential causes is much more incomplete, or is based 

on outdated data (e.g.(8, 9) ). Vigani, Cerezo (1) present information for wheat farmers in France and 

Hungary based on a broad-scale survey which concluded that there were significant differences in 

practice, preferences and perceived cost-benefits between countries that limited the potential for 

gaining information about drivers of yield that could be applied generally. Likewise, informal 

discussion within the industry and elsewhere, assumes that a subset of low yielding, presumed to be 

highly conservative holdings exist, although with little discussion of how these might be characterised 

and their effect on overall wheat yields. Also absent, at least within the UK, is consideration of the 

spatial structure underpinning yield. This is surprising given the oft cited relevance of climatic and soil 

 
1 There is some dispute as to whether the trend persists in more recent data, which lies outside of the scope of 
this analysis 
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related factors (e.g.(1)), which would be expected to generate strong spatial clustering in yields. In the 

UK it is generally acknowledged that the highest yields tend to be associated with northerly latitudes. 

This is believed to be primarily associated with the distribution of economically important pests but 

the extent to which this generalises across holdings and the relative size of the effect remains 

incompletely understood.  

This work originated from, and builds on, efforts to synthesise combinations of different agronometric 

datasets relevant to patterns in UK crop yields. UK agricultural production is a highly monitored system 

with numerous standardised datasets being compiled to represent specific aspects relevant to crop 

yield. Notable examples used in this study include:  

• The pesticide usage survey [PUS] (managed by FERA on behalf of the Chemicals Regulation 

Division [CRD]) which surveys the usage of pesticides and related agri-compounds on a sample 

of locations (stratified by farm size and region) across the UK. The data here is taken from the 

arable pesticide use survey, conducted every two years during the period examined.  

• The DEFRA ‘June Survey’ which is an annual survey of between 30,000 and 70,000 holdings 

each year, with an emphasis on understanding patterns of behaviour in the agrarian sector, 

the impacts of policy change and calculating national inventories of various relevant products. 

• The DEFRA Crop Disease Survey, which is conducted annually on a stratified sample of 

localities, with an emphasis on monitoring the presence of certain well-known diseases on 

several important crops including winter wheat and OSR. 

Following discussion with DEFRA and CRD these three datasets, in combination with other information 

such as: geographic location2, climatic data3, information about soil types4, and some relevant 

economic variables5 were identified as potentially relevant to understanding UK yields with respect to 

the focal crops. Here we present an analysis of this combined dataset focusing on the biennial 

sequence of yield values during the period 2000 to 20106. Our focus here is on understanding yields 

based on a simplified framework of measures arising from the combined data (the ‘feature set’). The 

construction of the combined data set is described below, and a copy of the code used in assembly (R 

version 3.5.1 (10); various packages) is provided in the attached code appendix.  

  

 
2 taken from the farm centroids in June survey 
3 taken from the Meteorological Office 
4 adapted from National Soil Map for England 
5 taken from the John Nix farm management pocketbook 
6 Following 2010 the structure of the PUS survey, from which the yield data are derived, underwent major 
revisions in the data collection process. One of the consequences of this is that yield information after this date 
ceases to be directly comparable with that generated during the preceding period. The presented analyses are 
restricted to the period where comparable data was available across all studied datasets. 
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2. Conceptual approach 

2.1. Statistical analysis and machine learning; an overview 
Insights from the combined dataset were developed using a combination of both statistical modelling 

and machine learning. In the context of this study, statistical modelling is defined as the application of 

classical parametric linear models fitted under ordinary least squares. The modelling approach is 

based primarily on the application of linear mixed effect models based on the implementation 

provided in the R package nlme (11). Full details on the implementation are provided in the 

descriptions of the various analyses and in the attached code appendix.  

Machine learning is a somewhat more ambiguous term, the use of which warrants discussion in the 

context of this study. Here, the focus is on one of the two major classes of machine learning problems, 

the so called ‘supervised’ problem wherein the objective is to use an algorithmic procedure (as 

opposed to a human/knowledge driven process of model selection) to identify [under some criteria] 

an optimal mathematical object (or set of objects) (henceforth ‘the model’) to the relationship 

between a set of variables (henceforth the ‘feature set’) and the value of some dependent 

measurement (‘the endpoint’). Classic examples of supervised problems include classification, where 

the end point is membership of some predefined grouping and regression, where the end point is the 

value of some continuous variable (such as yield).  

There is conceptual similarity between numeric analysis using supervised ML and statistical modelling. 

Both fit some sort of descriptor to feature set based on the values of the endpoint and in both cases 

the parameters of the description are optimised to minimise the error in the representation of the 

end-point values. However, there are some conceptual distinctions which serve to separate statistical 

modelling from the majority of commonly implemented machine learning approaches, and which 

define a distinct and non-overlapping role within numerical analysis.  

The first important difference is that many machine learning procedures combine within a single 

algorithm two different stages of the modelling process, feature selection (i.e. the choice of which 

elements of the feature set are relevant for inclusion in the generated description) and parameter 

optimisation (i.e. setting the values within the model object which link elements of the feature set to 

the end point). In a statistical modelling procedure these would typically be discreet steps, with 

manual feature selection based on expert theoretical understanding of the system being modelled, 

followed by parameter estimation using an optimisation algorithm. Typically, this will be followed by 

a model comparison process undertaken by a statistician, wherein the fit to the data is compared 

under different versions of model, to identify significant parameters and to examine whether the 

assumptions underlying the model are being met. In most common forms of ML these steps are 

treated as a single process wherein the feature selection and parameter values are jointly estimated 

while fitting the model object. Hence, concepts relating to formal model comparison are largly 

irrelevant in an ML context, with less emphasis placed on comparing alternative representations of 

the feature set. There are automated methods of feature selection applicable to what is otherwise 

conventional statistical models (the most well-known being LASSO or Ridge regression (12)) but in 

general this is an important distinction which shapes the utility of different methods to addressing 

different questions.  

Another very important difference between most common ML procedures and statistical modelling is 

related to treatment of the variation in observed endpoints which is not explained by the fitted model. 

In general models which are perfect descriptions of the endpoint are undesirable (for reasons relating 

to ‘overfitting’, see below). Hence, there is typically a component of the variation which remains 
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unexplained even after the optimal parameters have been estimated. This is formally termed the 

‘error’ or ‘residual’ on the model and its treatment has important consequences for interpretation of 

the findings. 

A key property of parametric statistics, and one which is largely responsible for the utility and power 

of these methods, are explicit assumptions in the model fitting regarding the distribution of the error 

on the model. In simple terms, when fitting a parametric statistical model, we assume that the values 

of the error are drawn from an unbiased normal distribution. This property allows us to describe the 

‘fit’ of a model to a dataset in a rigorous and mathematically well-defined way (e.g. via maximum 

likelihood or Akaike’s information criterion [AIC]) In addition, it is by making assumptions regarding 

the distribution of the error that we can calculate the uncertainty and confidence intervals around the 

model parameters, which can often be vital in of our interpretation of the model effects. However, 

this limits the application of statistical modelling to cases where the assumption is (approximately) 

true. 

By contrast most machine learning methodologies do not have a formal concept of error structure 

independent of the algorithm used to fit the model. Optimality in these methods is defined relative to 

the fitting algorithm and (usually) does not make the same sort of stringent assumptions about the 

distribution of error around the fitted model object. This can be very freeing in terms of application; 

in that it means that many ML techniques can be applied to data which fails to meet the assumptions 

necessary for statistical analysis. However, by the same token most ML approaches cannot benefit 

from many of the advantages which the assumed error structure provides in statistical modelling, e.g. 

simple methods for objectively choosing the best model among alternatives, and it is often challenging 

to estimate appropriate confidence intervals and uncertainty around estimates arising from ML 

approaches. This is one of the major reasons why of the two approaches, classical statistical modelling 

is often more appropriate when the question of interest relates to hypothesis testing (i.e. “Does this 

factor cause our endpoint to change?”) while ML is most powerful when applied to forecasting (where 

the formal structure of the model is less important than the quality of the fit to the data) and/or 

exploratory analysis (where the benefits of flexibility in representing the feature set may outweigh 

issues around model interpretability). 

One of the key properties of an informative model is that it should provide an acceptable description 

of the underlying system beyond the specific information used to generate the fit. This is perhaps most 

obvious when considering a forecasting framework, where conceptually a model might be trained on 

one data set (e.g. the yield values for a particular year henceforth the ‘training data’) and then applied 

to different but similarly structured dataset in order to generate an output (e.g. forecasting the next 

years yield values based on new values for the same features; henceforth the ‘use data’). The extent 

to which a ML model trained on one data set is applicable to other sets is described as generalisability. 

One of the key challenges in appropriate use of ML techniques is the issue that, because these 

techniques are so flexible in how they represent the relationships between feature set and end-point 

it is often the case that the resulting objects can place high weight on idiosyncrasies within the training 

data which are atypical of the use data. Where this occurs (termed ‘overfitting’), it can result in 

incorrect predictions from the ML model when applied outside of the training data. One way to 

examine for overfitting is to designate some part of the known data as ‘test’ data, which is excluded 

from training the model. This provides a test of how the model preforms on new data. The extent to 

which this provides a realistic test depends on the relation between the test data and fitted data being 

sufficiently close to the relation between use data and fitted data. Ideally the training-test and 

training-use data should, as far as possible have identical relations, although in practice this is rarely 

possible. The emphasis is typically on avoiding systematic bias which might invalidate the test process. 
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In the case of well-trained but not overfitted model there should be consistent high levels of fit (e.g. 

high correspondence between the fitted and predicted values) in both the training [which shows that 

the algorithm has fitted well to the provided data] and testing case [the latter showing that the fit is 

general and encompasses never-before seen data. This provides assurance that the ML model reflects 

some real physical process within the system].  This framework of training verses test datasets is also 

one of the only ways in which different methods for machine learning (in this case including statistical 

modelling) may be directly compared as improved fit on the test data is an index of improved model 

performance.  

To summarise, machine learning methods are very effective for fitting complex non-linear functions 

to relate a feature set and an endpoint in a highly optimised and systematised way. ML can often 

outperform equivalent statistical approaches in terms of their representation of the shape of 

relationships within the training data. However, the lack of an explicit error structure and the tendency 

towards overfitting means that the outcomes of such methods need to be interpreted with care 

(although this can be moderated somewhat by use of a test dataset). ML faces greater challenges 

around hypothesis testing and the scientific understanding of a complex system, as these situations 

typically rely on a more comprehensive understanding of the error structure within the data. 

2.2. Applications to this study 
For this study, due to the general lack of knowledge regarding the potential drivers of yield within our 

candidate datasets we have adopted a hybrid approach whereby we attempt to make use of the 

strengths of both statistical methods and ML for different purposes within the analysis. We began our 

investigation with a statistical analysis based on a restricted set of probable drivers which we refer to 

as the ‘core feature set’7. This is our initial hypothesis driven approach aimed at identifying which of 

our candidate features are potentially relevant in the context of yield and the extent to which we can 

fit adequate models with the restrictive assumptions of linear models.  

To support the interpretation of these models we have also fitted a ML algorithm (random forest) to 

the same data set with the intention of looking for structural elements, such as non-linearity and 

interactions which might be impacting on the fit of our linear models. Finally, we expand the feature 

set to include a wider array of possible predictors (the ‘Expanded feature set’) and repeat the ML 

analysis looking for any relevant predictors potentially absent from our analysis of the core feature 

set and to examine the impacts of this wider array of predictors on the conclusions about the identified 

drivers  

2.3. Random Forests 
The machine learning procedure used throughout this study is the widely used ensemble learner 

known as Random Forest (13-16). Ensemble learners are a family of techniques based on the principal 

that combining a set of different model objects (often trained on subsets of the original data) can 

generate a combined prediction which is much more powerful than any such object treated 

individually. In the context of random forest the individual objects are decision trees, (sometimes also 

referred to as Classification And Regression Trees; CART), a form of classification algorithm which 

identifies splits based on the input feature set which can be used to divide subpopulations which differ 

in their end point value (in this case yield).  

 
7 A core set was defined to avoid a weakness of complex linear models whereby they tend to become 
mathematically undefined if large numbers of parameters are fitted simultaneously, a feature which ML avoids 
through integrated feature selection 
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Individually, CART have a strong tendency toward overfitting however this can overcome by using a 

subsampling procedure such that each of the set of CART contributing to the forest is estimated on 

only a sample of the training set (a technique known as ‘bagging’) and a random sample of the 

available features (13). The resulting collection of trees (known as the ‘forest’) can be used both for 

joint prediction based on the feature set (e.g. from test data) and has informative properties that 

relate to the distribution and relative ‘importance’ of the features being fitted (variable importance).  

Variable Importance in a random forest (related, but not equivalent to, significance in a statistical 

model) can be measured in several ways focusing on different elements of the model fit. An approach 

used here is based on the change in the mean squared error on the predicted values (MSE) following 

the exclusion of the focal variable. This can be expressed either in terms of the overall model 

prediction or the so called ‘out of the bag sample’ [OOB], which is the set of data generated for each 

tree using the rows that are not included for estimating the CART function. Another approach, more 

suitable to categorical factors, is the node purity increase associated with including a particular 

measure (i.e. the extent to which the inclusion of a measure causes the outputs to group more 

homogeneously based on the decreased sum of square deviation within terminal groups). The final 

measure used is based on applying a binomial test of the hypotheses that inclusion of splits based on 

a variable within the set of calculated trees is a predicted function of the number of times that variable 

was included in the samples used to estimate the trees. Deviation from this hypothesis can be taken 

as statistical evidence than a variable is identified in the decision tree algorithm more than would be 

expected by chance, which is evidence for increased importance (the methodology follows that of the 

R package RandomForestExplainer (17)). 

In addition to these various measures of importance we will also explore the shape of the marginal 

effect of variables on the predicted outcome of the random forest using partial dependence plots. 

These one-dimensional plots display the estimated relationship of that feature of the value of the end 

point under the assumption of independence.  
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3. Dataset construction 
The selection of datasets for inclusion in this analysis is inherited from a previous phase of analysis 

and based on discussion with DEFRA and CRD. It includes the PUS, DEFRA June survey, DEFRA crop 

disease survey, data from the Meteorological Office, soil types from the National Soil Map for England 

and economic variables from the John Nix farm management for the biennial period from 2000 to 

20108 . 

The aim of the data assembly was to provide values for each of the factors taken from each of the six 

data sources that could be applied to each holding defined by a county parish holding (CPH) number 

and the year of sampling. The assembly of the data set was based on combining observations about 

holdings based on CPH number with explicitly geo-located observations using easting and northing 

map references for the centroids of the holdings. Internal holding codes for the PUS surveys for each 

year were mapped to CPH based on information provided by the PUS team and thus associated with 

records from the June survey. Information from the crop disease survey and met-office weather data 

were mapped via the recorded easting and northing references as outlined in Appendix 1: Dataset 

construction. Eastings and northings were used to estimate postcode districts (based on data provided 

from post office records), which were used to associate the extracted (raw information on soil types; 

prior to calculation of principal components). Economic variables were mapped to the year of survey. 

Information explicitly identifying individual holdings was not retained during analysis and all 

visualisations are aggregated to prevent the identification of any specific holdings.   

Factors judged likely to be most important in driving yield by agronomy specialists at FERA were put 

into a core feature set. In order to produce the core feature set some individual factors were 

aggregated into values that were considered to be likely to be related to yield, for example: total 

quantity of pesticide applied, number of different pesticides applied. Remaining factors were assigned 

to an expanded feature set. 

A full outline of the aggregation and mapping of the various datasets is provided in Appendix 1: 

Dataset construction and in the attached R code appendix.  

 
8 Yield data from the PUS is available for every two years within the studied period. All other datasets are 
matched to these intervals  
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4. Modelling and Analysis 

4.1. High-quality bread wheats (nabim One group) 
Modelling consisted of applying hypothesis driven statistical modelling to the core feature set before 

using the more flexible machine learning procedures to  

a) describe the shape of the relationship between important variables and yield (information 

which is not obtainable from the linear modelling used in statistical analysis)  

b) to investigate any potential interactions of interest between parameters, and finally  

c) to expand the scope of analysis beyond what is feasible for statistical procedures. This 

allows us to identify further non-core candidates for more in depth analysis.  

Prior to modelling we explored the potential for spatial structure in the yield values independent of 

the fitted variables. Spatial structuring in yield values reflects how similarity in yields between holdings 

varies as a function of distance. This is of interest in our modelling of yields because many of the 

potential predictors: day length, rainfall etc, are expected to have or reflect spatial gradients. Hence, 

we may expect spatially correlated yield values, which has implications for model fitting and 

representation of the error structure in the dataset. 

For hypothesis testing we adopted a step-down modelling approach whereby an initial model 

consisting of all core-features was fitted, and then non-significant parameters were sequentially 

removed until an optimal model was identified. Spatial locations of sites were represented as the 

latitude and longitudinal equivalents to the reported easting and northing values for the centroids of 

the CPH numbers associated with the holdings in a particular year (see Dataset construction).  

4.1.1. Spatial structure assessment 
In order to describe the spatial structure we fitted a least squares estimate of the change in yield 

values between pairs of holding over varying distance using the R package spatial (18). The results of 

this estimation can be viewed as a plot (known as a semi-variogram) which summarised the expected 

similarity between pairs of sites across varying distance. The semi-variogram for yields of the nabim 

One varieties of wheats is shown in Figure 1. We can see that holdings which are very close together 

tend to generate similar yield values (and hence show low variation with respect to the semi-

variogram). This effect rapidly drops off above around 0.1 degrees of separation and the variation 

then becomes largely unstructured. This pattern is strongly suggestive that if there are any spatial 

structuring elements present within the data set there are operating at highly localised scales, as 

opposed to following large scale climatic or geological gradients. 

We can assess the significance of the potential spatial structuring using the Moran I statistic, which is 

a measure of the relative contribution of spatial autocorrelation to the overall variance(19, 20). The 

implementation used is taken from the R package pgirmess (21). The most significant spatial 

structuring is observed at the very smallest spatial scales (so small that these may in fact reflect 

similarities between the limited number of holdings which are sampled in multiple years), with 

another marginally significant effect observed around 2 degrees of distance (just over 220 kilometres 

separation). On the basis of these observations we have elected to explicitly include an element of 

spatial structure in our model of nabim One wheat yields, which we have represented as an 

exponential correlation based on distance. This function models an expected structure where there 
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should be high similarly at very close distances with a rapid decline to zero correlation, and hence is 

the closest approximate match to what is observed in the empirical variogram. 

 

 

 

Figure 1 Visualisation of the empirical spatial structure associated with yields of nabim One wheat varieties. Upper: 

Empirical semi-variogram based on estimated least squares surface; Lower: results of simulation-based testing of 

the value of Moran’s I (an index of spatial autocorrelation) and varying distance, points shown in blue represent 

greater than expected spatial autocorrelation within the sample. Distances are calculated based on latitude and 

longitude coordinates using linear approximation. See text for discussion. 
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In total the nabim One data set included 615 records representing 589 unique CPH numbers. 

Throughout modelling, here and elsewhere, any missing data were fixed to the mean value of the 

relevant column. To reduce the effect of outliers on parameter estimates we restricted the analysis of 

the nabim One yields to only include values within a 50% window around the overall population mean 

(approximately 4.2-12.6 tonnes per hectare; shown by the red lines on Figure 2). 

The core feature set applied to wheat is shown below. It includes a three-way interaction between 

our aggregated descriptions of pesticide usage (Mean_Spray_Rounds*Count_Compounds 

*Total_Pestcide)9, which was one of the key parameters of interest in terms of the effect on yield. 

Names given refer to those in Appendix 1: Dataset construction 

nabinOne_Yield~ 
log(Area) [natural log], 
Prop_Own_seed, 
Primary_Variety 
Mean_Spray_Rounds*Count_Compounds*Total_Pestcide [interaction], 
log(Land_Farmed_by_Farmer_June) [natural log], 
mean.wind.preharvest 
mean.RH.prefrost, 
mean.temp.prefrost 
mean.rain.prefrost, 
Soil_PCA_ScorePC1 
Soil_PCA_ScorePC2 
Average_Corrected_Tritici_index 
Average_Corrected_brust_index 
Average_Corrected_yrust_index, 
Year [as a multilevel factor] 
latitude+ [Exponential spatial auto correlation] 

 

Figure 2 Distribution of Yield values associated with nabim One varieties of wheat in the analyses data set. The 

red lines show the cut off thresholds for the data analyses in this study corresponding to a 50% window around the 

overall population mean 

 
9 Syntax used to denote a three-way interaction between the number of spray rounds undertaken, the number 
of unique active compounds applied, and the total mass of pesticide applied. See Appendix 1: Dataset 
construction for discussion. 
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Table 1 Summary of the significant parameters identified from the analyses of the core feature set under statistical 

modelling to the yield values for nabim One varieties of wheat. Columns list the estimated parameter, standard 

error and the results of model testing to compare the relative fit to models where the parameter is removed. Names 

given reference those in the Dataset Construction section. See text for discussion 

Parameter Estimate Standard 
Error on 
the 
Estimated 
Value 

AIC of 
favoured 
model 
(df) 

AIC of 
favoured 
model 
excluding 
parameter 
(df) 

Likelihood 
ratio value 
of model 
test Ratio 

P value of 
model 
comparison 
test 

Primary Variety  see 
Figure 3 

 
1809.4 
(29) 

1902.3 (11) 128.9 <.0001 

Log (Area) 0.333 0.0536 
 

1846.2 (28) 38.86 <.0001 

Log(Land_Farmed_by_Farmer_June) -0.1803 0.0735 
 

1813.6(28) 6.24 0.012 
[Marginal] 

Prop_Own_seed -0.441 0.1057 
 

1825.2(28) 17.89 <.0001 

Count Compounds 0.0379 0.0124 
 

1816.8 (28) 9.484 0.0021 

Total Pesticide 0.1033 0.0240 
 

1826.4 (28) 19.04 <.0001 

mean.rain.prefrost -0.2927 0.0784 
 

1821.2 (28) 13.81 <.0001 

latitude 0.1057 0.0529 
 

1811.51 
(28) 

4.149 0.0416 
[Marginal] 

4.1.2. Statistical modelling (Core feature set) 
Following step down simplification the resulting optimal model for the nabim One varieties of wheat 

is described in Table 1. Drivers identified include: 

• Primary Variety10. Evidence for significant impacts of the primary variety can be broken down 

to represent specifically high yields associated with holdings where the variety ‘humber’ is the 

predominant cultivar, and low yield values associated with the ‘claire’, ‘hereward’ ,‘malacca’ 

and ‘soissons’(Figure 3).The challenge for interpreting these findings is a) resolving the 

relatively small sample sizes (minimum of 20 holdings) associated with each primary variety, 

and b) resolving the fact that many of these primary varieties are predominantly used as feed 

wheats. Hence it may be management practices on the holding, as opposed to the genetic 

variation in the crop grown, which are identified as driving yield values. This ambiguity is one 

of the drawbacks of the aggregation of the PUS data to farm level. More highly resolved data 

would be required to tease out effects11. Nevertheless, the observation that different major 

varieties are associated with systematic differences in yield over the decadal timescale 

considered here may warrant further investigation particularly if it is aligned to standardised 

potential yield data provided annually by the AHDB.  

• (log) Area of the holding. Larger holdings having higher yield per area values. This is likely to 

be a reflection of the impact of economies of scale on several potential drivers of yield, e.g. 

mechanisation and agrochemical input.  

• Proportion of own seed. This measure was included as a proxy for secondary sowing of wheat 

crops. Second wheat crops are often used as part of a cultivation cycle, and which often 

include a high proportion of the farmers own seed. Such sowings are widely recognised as 

 
10 The majority variety on the holding, not necessarily the majority nabim One variety 
11 Resolving PUS data to variety level is not possible due to single yield values being reported for fields containing 
multiple varieties. Resolving to field level introduces other issues, as individual fields cannot be geo-located for 
combination with soil, pest occurrence or weather data under the system outlined here. 
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producing lower yield values although, due to reduced costs, the economic margins may 

remain viable. This effect is estimated as the single largest in the optimal model (discounting 

the fitted spatial structure). 

• Total volume and diversity of pesticides applied. Both the total volume of pesticide usage 

and the diversity of active compounds applied are observed to have positive impact on yield. 

Interestingly these is no evidence to suggest that the measures used to represent the pest 

distribution from the crop disease survey have significant effect in the model of yield, which 

may indicate that the primary threat for which agrochemicals must be applied is not one of 

those measured in the crop disease survey (which is primarily focused on fungal pathogens). 

Alternatively, it may be that a large proportion of the recorded inputs are precautionary, and 

aimed at minimising risk of exposure, as opposed to being responses to pest outbreaks. It 

should also be noted that other factors, such as genetic variety and recent weather conditions 

can play a role in shaping regimes of pesticide application, which may weaken the links 

between pest occurrence and overall application. 

• Mean rainfall during pre-frost period. One of the most surprising effects identified in the 

model of yield is a negative impact of rainfall during pre-frost. More detailed examination of 

the shape of the effect indicates that this is driven primarily by several very dry sites which 

are associated with high yield values, rather than being reflective of a clear overall trend. As a 

result this parameter should be interpreted with caution.  

Other less significant potential drivers include that of the area farmed by the farmer (a negative trend 

largely driven by extreme outliers associated with the very largest holdings) and very small marginally 

significant latitudinal gradient, with very slight increases in yields at high latitudes. While statistically 

significant drivers of yield were found, the proportion of variation in yield described by the model is 

small (r-squared 0.23). This means that the great majority of variation in yields is either driven by 

factors that are not included or is largely random with respect to the fitted model. Primary variety is 

estimated to lead to a potential expected difference of 2.5 T/Ha between the highest and lowest 

yielding varieties; other factors may lead to an expected difference of approximately 1T/Ha. (see 

Appendix 2: Visualising the shape of numeric parameter effects in statistical modelling; Figure 31) 

 

Figure 3 Estimated effects (model estimate and confidence interval) for the levels of Primary Variety in the optimal 

model for nabim One wheats.  
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In statistical modelling, our estimates of effect sizes are only reliable so long as the model fits the 

observations and our assumptions about the form of the residual variation around the fit are 

adequately met. Examining whether the residual variation conforms to expectations is an important 

and informative part of statistical modelling. One way to visualise the variation of observations around 

fitted values is the quantile-quantile plot (Figure 4; Left). Here empirical quantiles of residual variation 

around the model are plotted against the theoretical quantiles of the assumed distribution (an 

unbiased normal distribution). A good fit produces residuals that fall close to the expected straight 

line. Examining this plot shows that at the low end of the distribution there are points which show a 

poor fit. Observations are plotted against fitted values (Figure 4; Right) we can see that the non-

conforming data tends to cluster at the low end of the distribution and in particular all points where 

the observed yield is less than 6 tonnes per hectare are poorly described in terms of the fitted model. 

This a) raises issues in terms of the interpretation of the fitted model and b) represents an interesting 

divergence from observations in previous studies on the distribution of farm level yields in wheats 

(22). Non-normality in yield distributions has been previously reported (e.g. (23)), although correcting 

for this in modelling requires specialist tools beyond the scope to this analysis, particularly where 

geographic structuring/ correlation is also of interest within the study (24, 25).  

One interpretation for the observed difference from the expected error structure is the presence of 

an unrecognised population of holdings with systematically lower than expected yields. This 

impression is reinforced by examining the prediction interval around of the some of the key 

parameters of the model and in particular the failure of the low yielding site to fall within the envelope 

of the predicted model parameters (Appendix 2: Visualising the shape of numeric parameter effects 

in statistical modelling). This suggests that underlying processes driving yield at these sites includes 

factors that do not drive yield in most sites. Possible reasons for this are: 

• These records could represent errors in the yield data collected for the PUS. Systematic bias 

in data collection within the PUS is considered unlikely due to the structure of the survey. 

However, other issues such as non-comparable cropping data, issues around mixed fields and 

/or re-sown crops could contribute to errors and would account for some of the very low 

values reported for problematic sites. 

• These records may represent failed crops (for whatever reason) which caused changes in 

behaviour, such as differences in pesticide usage.  

• These records maybe evidence for a subpopulation of relatively inefficient farms, where low 

yield is a function of some unobserved biological (e.g. a sporadic pest outbreak) or social 

factors (e.g. failure to uptake relevant technologies). The existence of a low efficacy 

population with UK wheat farms has previously been speculated [ e.g. (26)], although there is 

limited information on their characterisation. A potential extension of the work conducted 

here could be to examine the extent to which other factors, including social factors, are 

associated with wheat yields.  
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Figure 4 Diagnostic plots for the relative fit of the optimal model identified for nabin One wheats relative to the 

assumed error structure for a linear model. Left; the qqnorm plot (described in text; the line represents the ideal 

assumed error structure and the points represent that observed); Right Observed (x axis) and predicted values 

from the model (y axis) points associated with large negative residuals are highlighted in blue  

4.1.3. Machine learning (Core feature set) 
After fitting a suitably tuned random forest to the dataset the parameters of highest importance 

largely correspond to those identified in the statistical analysis. There are some notable differences in 

the relative impact as represented by estimated importance which combines concepts of significance 

and effect size (Figure 5). By far the most important drivers identified are the area of the holding and 

the diversity of the applied active ingredients (‘Count Compounds’). Also identified as being of high 

importance is the Primary variety, with a cluster of other measures including latitude, total pesticide 

usage and the number of spray rounds appearing a group of somewhat lower relevance; Figure 5. 

Focusing on the two most important identified measures, the partial dependence plot of the diversity 

of compounds applied is striking in that it implies a stepped function in relationship between this 

measure and yield (Figure 6; Upper Left). The impact of a greater diversity of applied compounds has 

a positive impact on yield after a minimum of eight actives are included before levelling out after 

around 17 compounds applied. At 12 active ingredients however, there is a major transition associated 

with greatly enhanced expected yield values above this threshold, which may imply structural 

differences in the profile of spraying regimes as a potential component of predicted yield.  

Farm area shows a very simple relationship with yield values: yields are predicted to be extremely low 

on the very smallest holdings, possibly due to the effects of economies of scale, and then rapidly level 

out such that there is very little impact of increasingly large holdings sizes (Figure 6; Upper Right)12. 

Brief investigation reveals limited evidence of structured interactions between the two parameters 

with the exception that they are strongly reinforcing for small area and low diversity of compounds.  

 

 
12 Although it should be noted that the area of an individual holding is not always indicative of scale of the parent 
business, as some of the farms sampled within the PUS are managed as part of larger collective units. 
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Figure 5 Scores in relation to various measures of importance for variables in the random forest of the core feature 

set as applied to nabim One wheats. X-axis; the increase in the estimated measure square error on the predicted 

values associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of points 

clustered in the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data in the 

underlying decision tress more then would be expected by chance. For clarity only the top ten most important 

measures are named.  

While the overall measure importance from the random forests largely reinforce the conclusions 

generated in the statistical modelling, it should be noted that there is evidence for over-fitting. If the 

forest is recalculated using a random sample of 80% of the original dataset, the resulting fitted model 

is similar to that described above: the fit appears to be good (R-squared is 0.85). However, upon 

application to the remaining 20% of data (unseen during training), the resulting fit is very poor (R-

squared of predicted verses observed values in the test set is 0.26). This is evidence that the resulting 

model does not provide a useful way of predicting yield. This is of concern, because if our model was 

truly reflective of physical processes driving yield, we would expect similar performance on both 

training and test data. This implies we should be sceptical of over-interpretation of the resulting model 

fit. 

Comparable values from the statistical models are 0.162 with respect to the training data and 0.060 

to testing data, hence the forest is doing better job of representing the data than is the case for the 

linear models, but it currently neither of the models appear to be making reliable estimates of yield . 

This can be considered evidence that there is substantial variation in yield which is not captured in the 

data set analysed, suggesting that either the representation of the information is inadequate to 

accurately reflect the relationships with yield or, far more likely, that there is insufficient power in the 

included measures to predict yield values at a the level of individual holding.  

 

 

  



 

22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Predicted model effects for selected measures in the random forest of the core feature set as applied to 

nabim One wheats. Upper left and right; partial dependence plots of the relationship between predicted yield and 

the diversity of actives and the area of the holding respectively. Lower plot shows the interaction between these 

measures in terms of predicted yield values 

4.1.4. Machine Learning (Expanded feature set) 
The application of ML to the expanded feature set attempts to identify parameters that may have 

been missed in the core feature set which can be used to describe the drivers of yield in nabim One 

wheat. The importance of parameters based on a random forest of the expanded parameter set (see 

Dataset construction) are shown in Figure 7. Once again, under the majority of the measures 

considered, the diversity of compounds (with a similar stepped relationship as in the core feature set) 

is identified as notably more important than any other measure in the data set, followed by area and 

primary variety.  

The most notable parameter identified as important but not included in the core feature set is the 

mass of growth regulator applied on a holding; Figure 8. This is only apparent in a subset of the 

included importance measures but may be important given existing research into the effect of these 

compounds on yield values. Growth regulators are compounds which actively manipulate the growth 

patterns within the wheat crop, to generate shorter plants (internodes), thicker stems, thicker stem 

cell walls and less lodging. Previous research has indicated both positive and negative impacts on crop 

yield (9, 27)  although there is limited evidence associated with trials in multi-input systems (28). There 
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is also data uncertainty within our analysis in relation to this parameter, as there are many “not 

known” values associated with the application of growth regulators (reflecting decisions in the data 

assembly process) which may skew the measure effect. Overall, the shape of the relationship between 

yield and growth regulators appears stepped with a yield increase associated with non-zero inputs 

followed by a further increase at around 1.5 tonnes per hectare. 

 

Figure 7 Scores in relation to various measures of importance for variables in the random forest of the expanded 

feature set as applied to nabim One wheats. X-axis; the increase in the estimated measure square error on the 

predicted values associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of 

points clustered in the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data 

in the underlying decision tress more then would be expected by chance. For clarity only the top ten most important 

measures are named. 

 

Figure 8 Predicted model effects for selected measures in the random forest of the expanded feature set as applied 

to nabim One wheats. Partial dependence plots of the relationship between predicted yield and the application of 

growth regulators 
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4.2. Feed wheats (nabim Four and unclassified wheat varieties) 
A challenge for assessing the potential drivers of yield in feed wheats is that, in contrast with the 

milling wheats described above, this group does not have a clear delimitation to provide a basis for 

selecting comparable crops. Many varieties otherwise used as milling wheats will, upon failing to meet 

quality criteria, be converted to feed, which makes a variety driven classification challenging to 

definitively interpret. The definition used here is based on combining the set of known feed wheats, 

listed under group four of the nabim classification with the group of unclassified varieties which are 

assumed but not demonstrated to be predominately feed wheats (which make up the vast majority 

of the overall wheat crop). We considered this to be the best possible compromise which serves to 

maximise the data sample available for model fitting from the limited information available.  

4.2.1. Spatial structure assessment 
The approach to modelling used for the feed wheats largely mirrors that of the milling wheats outlined 

above. One important difference between the two groups lies in the empirical evidence of their spatial 

structure revealed in their respective semi-variograms (Figure 9). Where for the nabim One wheats 

there is a clear signal of increased similarity between holdings at short distances, this is almost 

completely absent from the patterns observed in the feed wheats. Rather, there is puzzling ‘hump’ in 

the difference between sites separated by a distance of greater than 3 degrees which is difficult to 

account for in any simple model for spatial structure. This may reflect some larger scale process within 

our restricted geographic sample (e.g. the distribution of major agricultural regions within the UK). In 

the absence of a clear function to be used to represent the spatial structure the fitted models for the 

feed wheats are calculated without any explicit correlation function to represent spatial 

autocorrelation, with the parameters included in the model being otherwise identical to that outlined 

for the nabim One wheats (see above). 

The data set for feed wheats includes 903 records representing 873 unique CPH numbers. As with the 

milling wheats the model sample is restricted to a ±50% envelope around the mean (approximately 

the range 4.31-12.9 tonnes per hectare) to reduce the potential impact of extreme outliers (Figure 

10). Note also that compared to the milling wheats the distribution of yield values for feed wheats is 

more bimodal with a noticeable secondary peak at around 7 tonnes per hectare.  

 

Figure 9 Empirical semi-variogram based on estimated least squares surface of yield in feed wheat varieties, see 

discussion in text 
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Figure 10 Distribution of yield values for feed wheat varieties, Red lines indicate the envelope included in the 

presented analyses 

Table 2 Summary of the significant parameters identified form the analyses of the core feature set under statistical 

modelling to the yield values for feed wheat varieties Columns list the estimated parameter, standard error and the 

results of model testing to compare the relative fit to models where the parameter is removed. Names given 

reference those in the Dataset Construction section. See text for discussion 

Parameter Estimate Standard 
Error on 
the 
Estimated 
Value 

AIC of 
favoured 
model 
(df) 

AIC of 
favoured 
model 
excluding 
parameter 
(df) 

Likelihood 
ratio 
value of 
model 
test Ratio 

P value of model 
comparison test 

log(Area) 0.2007 0.0411 2957.1 
(10) 

2978.8 (9) 23.74 <.0001 

Prop_Own_seed -0.320 0.107 
 

2964.1 (9) 9.061 0.0027 

Mean_Spray_Rounds 0.0677 0.033 
 

2959.1 (9) 4.04 0.0455 
[Marginal] 

Count_Compounds 0.0564 0.021 
 

2962.0 (9) 6.957 0.0087 

mean.RH.prefrost 0.0671 0.017 
 

2969.6(9) 14.48 0.0002 

mean.rain.prefrost -0.353 0.072 
 

2978.6 (9) 23.61 <.0001 

Soil_PCA_ScorePC2 0.266 0.124 
 

2959.7 (9) 4.67 0.0316[Marginal] 

Latitude 0.1057 0.1057 
 

2960.9 (9) 5.83 0.0163 

 

4.2.2. Statistical modelling (Core feature set) 
The optimal set of model parameters for feed wheats after model simplification shows notable 

differences compared with that inferred for the nabim One wheat group. Conspicuously absent from 

the optimal model is evidence for a significant impact of primary variety (the majority variety on the 

farm), which may provide evidence for a reduced role of farm management practices in the yield of 

the feed varieties. Also notable is the lack of evidence for total pesticide load as a predictor of yield. 

Instead the diversity of compounds and the number of spray rounds are recovered as the only 

significant predictors associated with agrochemical inputs. We can hypothesise that this may be 
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related to variation in the spray regime between holdings or be evidence of saturation wherein the 

coverage of applied actives is of greater significance than the total pesticide application. Teasing out 

the specific effects of spray regime is challenging with the current dataset; more high resolution and 

standardised approach to data collection (to resolve some of the confounding factors) may be 

required (see Further Work).  

Similarities between the feed and milling wheats results include continued evidence for efficiencies of 

scale (log Area), reduced yield associated with secondary sowing (Prop_Own_seed) and a weak effect 

of increasing yield at higher latitudes. As previously, low rainfall in the pre-frost period is recovered as 

a significant factor in predicting yield values, although many of the same caveats for milling wheats 

apply here. Novel to this analysis, is evidence for a positive impact of elevated humidity during the 

pre-frost period. However, it is unclear to what extent these interact and/or reflect a common 

underlying process. There are marginal impacts of soil type: specifically, the second principle 

component associated with conditions of impeded drainage. This may be associated with the same 

phenomenon, given the role of soils as mediating water availability particularly during the pre-frost 

period. 

In common with nabim one wheats, while statistically significant drivers of yield were found, the 

proportion of variation in yield described by the model is small (r-squared 0.19). This means that the 

great majority of variation in yields is either driven by factors that are not included in the model or 

occurs randomly. 

 

Figure 11 Diagnostic plots for the relative fit of the optimal model identified for feed wheats relative to the assumed 

error structure for a linear model. Left; the qqnorm plot (described in text; the line represents the ideal assumed 

error structure and the points represent that observed); Right Observed (x axis) and predicted values from the 

model (y axis) points associated with large negative residuals are highlighted in blue  

When the model diagnostics are considered, the extent of deviations from the assumptions of 

normality can be observed in the feed wheats, that may be more serious than those previously 

discussed. Once again there is a population of low yielding sites which do not appear to conform to 

the assumptions underlying the fitted model and which dominate at the lowest end of the reported 

yields (Figure 11). Plotting the most divergent site reveals no obvious spatial or temporal pattern to 

their occurrence13. This may provide evidence of social factors in driving non-compliance (although 

this would require additional datasets to confirm). Exploring these unexplained population level 

differences is a major potential area of study following on from this initial analysis. 

 
13 Figure not shown due to confidentiality requirements around the use of PUS and June survey datasets 
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4.2.3. Machine Learning (Core feature set) 
Based on the Random Forest ML applied to the core feature set we observed that, as with the milling 

wheats, the count of unique active ingredients applied is identified as the single most important factor 

for the prediction of yield (Figure 12). The number of spray rounds undertaken is also given high 

importance and other variables most noticeably longitude also feature, having not previously played 

any major role is determining wheat yields. Primary variety continues to be identified as contributing 

node purity, but not to MSE reduction (which may align with it not being a significant factor in 

statistical modelling). Area of holding continues to be a relevant measure, although noticeably less so 

than was observed previously, particularly given the increase relevance placed on the number of spray 

rounds undertaken.  

The shape of the relationship with the diversity of actives is broadly similar to that observed in the 

milling wheats, although the step change at 12 active compounds is perhaps more pronounced (Figure 

13). The shape the response to the number of spraying rounds is largely reflective of a continuous 

trend of increasing yields over the interval between 5 and 10 spray rounds (containing the vast 

majority of the recorded data) with levelling off at the extremes of the distribution. There is limited 

evidence for structured interactions between these two measures. However, below around 7 rounds 

the impact of low compound diversity appears particularly pronounced.  

As with the milling wheats, there is evidence for lack of generality /overfitting in the application of the 

Random forest, with R-squared with respect to the training (0.842) and testing (0.198) datasets again 

differing widely, which may indicate issues in the generality of the fitted function.  

 

Figure 12 Scores in relation to various measures of importance for variables in the random forest of the core feature 

set as applied to feed wheats. X-axis; the increase in the estimated measure square error on the predicted values 

associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of points clustered in 

the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data in the underlying 

decision tress more then would be expected by chance. For clarity only the top ten most important measures are 

named. 
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Figure 13 Predicted model effects for selected measures in the random forest of the core feature set as applied to 

feed wheats. Left and right; partial dependence plots of the relationship between predicted yield and the diversity 

of actives and the number of spray rounds respectively. 

 

4.2.4. Machine Learning (Expanded feature set) 
The expanded feature set reveals several additional measures potentially of interest beyond the core 

feature set. As in milling wheats, growth regulators are identified as a factor affecting yield values, 

with a stepwise structure in the associated response curve: yields increasing from around 1.2 kg per 

hectare. Also of interest is a negative association with the proportion of set aside grassland 

(Total_Grass_SE; expressed as a proportion of the total area farmed by the farmer see above), which 

may be evidence for higher yields being associated with more intensive agricultural practice. This is of 

particular interest given the association with the agricultural payment schemes and farmer incentives 

which may provide tools to shape yields and behaviour across holdings. More in depth analysis of the 

potential impacts of set aside on wheat yields require information not currently included in the study 

sample but which could in principal be obtained in follow on work. 
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Figure 14 Scores in relation to various measures of importance for variables in the random forest of the expanded 

feature set as applied to feed wheats. X-axis; the increase in the estimated measure square error on the predicted 

values associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of points 

clustered in the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data in the 

underlying decision tress more then would be expected by chance. For clarity only the top ten most important 

measures are named. 

 

Figure 15 Partial dependence curves of yield in feed wheats with various important measures from the expanded 

feature set. Plots are based on the cross validated feature contribution concept from the forestFloor R package 

(29) and are shown in decreasing order of importance (mean squared error on the prediction of the OOB error) 

from the upper left.    
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4.3. Oilseed rape 

 

Figure 16 Visualisation of the empirical spatial structure associated with yields of oilseed rape. Upper: empirical 

semi-variogram based on estimated least squares surface; Lower: results of simulation-based testing of the value 

of Moran’s I (an index of spatial autocorrelation) and varying distance, points shown in blue represent greater than 

expected spatial autocorrelation within the sample. Distances are calculated based on latitude and longitude 

coordinates using linear approximation. See text for discussion. 
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4.3.1. Spatial structure assessment 
The empirical spatial structure associated with oilseed rape (OSR) shows a trend of increasing variation 

between holdings of increasing distance which is quite distinct from that of either of the two wheats 

(Figure 16). Unlike the nabim One wheats there is no rapid drop off in similarity associated with closely 

adjacent sites. Rather, greater than expected similarity (based on the Moran I statistic) is recovered 

continuously over the range 0 to 1.5-degree distance and qualitatively up to 4 degrees distance. Above 

around 3.5-degree separation the similarity becomes largely unstructured, with the apparent hump 

likely being driven by change variation in a small number of pairs of holdings. The observed 

distribution suggests a more gradual correlation function than the exponential model used above. 

Hence, we have applied a normally distributed correlation structure to our statistical model to 

represent a somewhat gradual decline in similarity between sites at increasing separation 

(mathematically, if holdings are a distance r apart, their expected correlation due to distance (r) on a 

variable with range d is exp (−(𝑟 𝑑⁄ )2).  

The OSR dataset included 1034 records representing 981 unique CPH values. In contrast with the 

wheat data the number of outliers in the OSR yields were relatively small (Figure 17). Hence we have 

elected to not restrict the analysis window for this dataset. The core feature set (prior to 

simplification) used to model OSR is as follows: 

OSR_Yeild~ 
 log(Area) 
 Prop_Own_seed, 

Primary_Variety                                
Mean_Spray_Rounds*Count_Compounds*Total_Pestcide [Indicating an interaction between 
these parameters], 
log(Land_Farmed_by_Farmer_June), 
mean.wind.preharvest 
mean.RH.prefrost, 
mean.temp.prefrost 
mean.rain.prefrost, 
Soil_PCA_OSR_ScorePC1, 
Soil_PCA_OSR_ScorePC2, 
Soil_PCA_OSR_ScorePC3, 
Average_Corrected_lls_index, 
Average_pod_alternaria, 
Average_stems_with_alternaria, 
Average_stems_sclerotinia, 
Year (as multilevel factor) 
latitude+ [ Normal spatial auto correlation] 
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Figure 17 Distribution of yield values for oilseed rape 

 

Table 3 Summary of the significant parameters identified form the analyses of the core feature set under statistical 

modelling to the yield values for oilseed rape. Columns list the estimated parameter, standard error and the results 

of model testing to compare the relative fit to models where the parameter is removed. Names given reference 

those in the Dataset Construction section. See text for discussion 

 

  

Parameter Estimate Standard 
Error on 
the 
Estimated 
Value 

AIC of 
favoured 
model 
(df) 

AIC of 
favoured 
model 
excluding 
parameter 
(df) 

Likelihood 
ratio 
value of 
model 
test Ratio 

P value of 
model 
comparison 
test 

Prop_Own_seed -0.1383 0.0617 2302.4 
(26) 

2305.5 (25) 5.127 0.023 

Primary Variety Figure 19  
  

2369.14 
(14) 

21.54 0.0429 
[Marginal] 

Year Figure 18 
  

2463.33 
(21) 

67.14 <.0001 

Soil_PCA_OSR_ScorePC3  0.2828 0.1072 
 

2307.5 (25) 7.09 0.007 

Latitude  0.1678 0.0232 
 

2352.3 (25) 51.97 <.0001 

Total Pesticide -0.0474 0.0194 
 

2306.4 (25) 6.052 0.013 

Count Compounds 0.066 0.0106 
 

2994.4 (25) 693.99 <.0001 
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4.3.2. Statistical modelling (Core feature set) 
The optimal parameter set identified under stepwise simplification for OSR yields are shown in Table 

3. In marked contrast with wheats the most important parameters include the year of sample, 

indicative of pronounced a trend in increasing yields observed through the dataset (consistent with 

previous observations for OSR yields during this period (2)). There is some evidence from the 

parameter estimates for a degree of periodicity in OSR yields (with yields in 2004 and 2008 being 

noticeably lower than for the surrounding intervals). This may reflect elements of cyclic land usage 

(i.e. between OSR and wheat) across the sampled holdings although the interval under study is too 

restricted for this to confirmed. Variation associated with the primary variety was detected, although 

with marginal significance. The impact of the major crop on a holding appears to be small, with large 

uncertainties on the estimates of the parameters, although there may be some difference between 

(relatively) low yielding sites where ‘expert’ is the major variety when compared with higher yields 

associated with ‘castille ‘ and ‘escort’ (Figure 19).  

Of the numeric predictors identified the most important effects are associated with latitude and the 

diversity of applied active compounds. The wheat data had shown a small and statistically marginal 

impact of increasing latitude on increased yields, however, for OSR, this effect is larger and more 

robustly supported by the model. Note that this is in addition to the explicit spatial structure applied 

to the modelling. Hence high latitude sites are associated with increased yields above the level which 

might be expected given the implied spatial structure. Potential causes for this trend include the 

impact of day length or other climatic factors strongly correlated with latitude, or potentially the 

distribution limits of key pest species.   

The trend of increased yield with increased diversity of applied actives is one observed throughout 

this analysis and is perhaps the single most well supported conclusion of the applied modelling. 

Interestingly for OSR there is evidence of a negative impact of total mass density of pesticide use. The 

causality is unclear: it may be that increased pesticide loads are associated with holdings where pest 

outbreaks were observed.  

Of the remaining measures, second sowing of OSR is relatively rare, and hence Prop_Own_seed likely 

reflects differences in agronomy practice and the viability of stored seed, as opposed to the repeated 

sowing observed in wheat.  In contrast with wheats, we also identify a small effect of soil types on OSR 

yields, in particular the distinction between naturally wet and loamy soils captured in the third 

principal component of the calculated PCA. Given the relatively small proportion of variance that this 

component represents and the failure to associate significance with the other soil measures the 

relevance of this factor for OSR yields is unclear and may warrant a more detailed investigation. 

In common with the wheats, while statistically significant drivers of yield were found, the proportion 

of variation in yield described by the model is small (r-squared 0.15). This means that the great 

majority of variation in yields is either driven by factors that are not included in the model or occurs 

at random. 

Examination of the model’s error structure again reveals that particularly at the low end of yield values 

there are deviations from the assumed error structure (Figure 20). When compared with the wheats 

the distribution of poorly predicted sites is less clustered at the extreme low end of the distribution 

(although all sites where yields less than 1 tonne per hectare were reported are included) which may 

indicate that this issue in term of model fit is a more dispersed one that is less clearly associated with 

a discrete sub population of sites.  
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Figure 18 Estimated effects (model estimate and confidence interval) for year in the optimal model for oilseed rape. 

 

Figure 19 Estimated effects (model estimate and confidence interval) for primary variety in the optimal model for 

oilseed rape 
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Figure 20 Diagnostic plots for the relative fit of the optimal model identified for OSR relative to the assumed error 

structure for a linear model. Left; the qqnorm plot (described in text; the line represents the ideal assumed error 

structure and the points represent that observed); Right Observed (x axis) and predicted values from the model (y 

axis) points associated with large negative residuals are highlighted in blue 

4.3.3. Machine Learning (Core feature set) 
The application of random forest machine learning to the core feature set for OSR largely reinforces 

effect of latitude as the most important parameter. (Figure 21). Other important parameters include 

primary variety, year and the diversity of compounds although in general each of these is only 

identified as of major importance on a subset of calculated measures. 

The shape of the relationship between yield and latitude shows a stepped function wherein the 

boundaries between 52 degrees north (approximately the latitude of Ipswich) and just south of 54 

degree north (approximately Leeds) are associated with transitions in the estimated effect on yield 

(Figure 22). Precisely what causes these transitions is unclear, it may be that they represent the 

distribution limits of some pest organism or pathogen or that they reflect areas of common 

agricultural practice. There is evidence that the southerly and more influential step, appears to be 

common across different years and primary varieties (Figure 23) although with some variation) which 

may indicate that an administrative/behavioural cause is more likely (as a biological effect would be 

expected to show inter-year variation). Alternatively, the crop disease survey identifies outbreaks of 

Alternaria (‘pod spot’) as having a northerly limit approximating the observed transition in yield, 

although in this case it is unclear why the measures of disease prevalence do not feature more 

prominently in the model. Likewise, another major economic pest of OSR, cabbage stem flea beetle 

(Psylliodes chrysocephala L.) also has a southerly distribution within the UK and could play a major 

role in influencing patterns of yield, although testing this would lie outside of the scope to the reported 

analyses14.  

In contrast with wheats, the shape of the relationship between yield and the diversity of active 

ingredients applied does not show a sharp transition; instead it shows a general increase in yield 

response levelling out at around 13 compounds applied.  

 
14 Data on the occurrence of cabbage stem flea beetle was not available within the studied datasets. FERA has 
access to datasets relating to the occurrence of this pest which could be investigated for use in further work. 
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Figure 21 Scores in relation to various measures of importance for variables in the random forest of the core feature 

set as applied to OSR. X-axis; the increase in the estimated measure square error on the predicted values 

associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of points clustered in 

the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data in the underlying 

decision tress more then would be expected by chance. For clarity only the top ten most important measures are 

named. 

 

Figure 22 Left and right; partial dependence plots of the relationship between predicted yield and latitude and the 

diversity of applied compounds respectively in the random forest of the core feature set as applied to OSR. 
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Figure 23 Predicted function for the relationship between yield and latitude from the random forest of the core 

feature set applied to OSR. Upper by Year, Lower by Primary variety. Observed values are shown as points.   
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4.3.4. Machine Learning (Expanded feature set) 
Random Forest of the expanded feature set with respect to OSR yield reveals that in addition to 

latitude the most important measure in predicting yield values is the volume of Fungicide15 applied 

(Figure 24). As shown by the disease surveyed under the crop disease survey, OSR is subject to a wide 

range of economically important fungal diseases and it may be that control of these diseases is the 

major driver behind the relative high importance assigned to Fungicide usage. It is notable that in the 

context of the expanded dataset the diversity of compounds applied has a relatively reduced 

importance, strongly suggesting that it is fungicides, and possibly the diversity thereof, that are the 

key component associated with systematic yield change in OSR. In terms of the shape of the 

relationship, the volume of fungicide application shows a clear tendency towards diminishing returns 

above around 0.8 kilograms per hectare and interactions with latitude are minimal; the expectation is 

that very low fungicide usage has a severe impact on yield regardless of position within the latitudinal 

gradient (Figure 25) 

 

.  

Figure 24 Scores in relation to various measures of importance for variables in the random forest of the expanded 

feature set as applied to OSR. X-axis; the increase in the estimated measure square error on the predicted values 

associated with the loss of a parameter. Y-axis; the increase in node purity (relative similarity of points clustered in 

the underlying decision tree); Colour; a binomial test for if the variable is used to subdivide data in the underlying 

decision tress more then would be expected by chance. For clarity only the top ten most important measures are 

named. 

 

 
15 Note that some common fungicidal compounds used with OSR, such as conazoles, are sometimes also used 
and marketed as growth regulators.  
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Figure 25 Predicted model effects for selected measures in the random forest of the expanded feature set as 

applied to OSR Upper left and right; partial dependence plots of the relationship between predicted yield and 

latitude and application of fungicide respectively. Lower plot shows the interaction between these measures in 

terms of predicted yield values 
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5. Conclusions and Discussion 
The focus of the modelling conducted here has been to take a large number of potential drivers of 

yield and to use statistical and machine learning approaches to describe the subset that display a 

significant correlation with observed yields. This should be interpreted to be primarily an exercise in 

hypothesis generation based on the identification of areas for further research. This work is one of a 

minority of studies into crop yields based on data from real holdings and combines data from many 

different sources originally collected for different purposes and spatial scales. As a result, there is a 

large amount of noise and other confounding effects in the data collection process which restrict our 

ability to clearly distinguish the processes driving yield. Confirmatory investigation, e.g. based on more 

standardised and focused data collection, is thus advised in exploring the features identified here and 

in understanding their significance within the wider UK farming infrastructure and policy environment.  

Changes in yield associated with the factors examined in this study were generally small compared 

with random variation in yield observed between holdings. The most consistent effect identified 

across the three crops considered was evidence that the diversity (as opposed to the total mass) of 

pesticides is one of the key factors associated with change in yield in the three systems. We estimated 

that this may lead to an expected change in yield of approximately 1T/Ha when comparing the lowest 

to highest diversity (see Appendix 2: Visualising the shape of numeric parameter effects in statistical 

modelling). That diverse agrochemical profiles, particularly in relation to pesticides, should be 

associated with higher yields is not in itself surprising, because it indicates that a crop has been 

protected against a range of potential threats, including both a wide range of pathogens and, 

potentially, issues around resistance. The stepped profile associated with the wheat yields is 

somewhat more surprising. The implication is that there is an optimal spray profile (including over 12 

compounds) above which further increases in expected yields are not seen. What is less clear from 

the current analysis whether this effect is related to the diversity of compounds per se or if the effect 

can be attributed to the inclusion within spray programmes of particular compounds or combinations 

of compounds which are only included in high diversity regimes. This is a potentially interesting area 

of further research but one which lies outside if the scope of the current analysis and requires a 

redefinition of how PUS dataset is represented in order to fully address. 

The observed importance of seasonal weather conditions aligns well with the perceptions of farmers 

(1). However, due to a number of data issues outlined above, it is unclear whether differences 

between nabim One wheats (where only rainfall during the pre-frost periods is identified) vs feed 

wheats (where the humidity is also identified as a key driver) are driven by differences between 

varieties. Ideally this would feed into discussion on soil moisture levels, particularly given how soil 

type may interact with water retention and the economics of irrigation (30). However, it is unclear if 

there are adequate proxies in the data currently available or if this would require expansion of the 

source datasets. 

Also, in wheat, evidence for economies of scale, with larger holdings generating disproportionately 

high yield values has implications for the structuring of Agri-payment systems particularly given the 

potential for EU exit. The recorded negative impact of the proportion of land ‘set aside’ as grassland 

within the feed wheats suggests that there as might be trade-offs to consider in terms of the goals 

and targeting of payment schemes. It could be interesting to consider how information on biodiversity 

and other  externalities could be incorporated into the dataset, as well as more direct consideration 

of payments received, as previous work has suggested some association between Common 

Agricultural Policy (CAP) payments and yield (1) which is a leading candidate for explaining the subset 

of low yielding localities.  
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With respect to OSR the effect of the latitudinal gradient on yield and its stepwise profile was 

unexpected, and its causes are not fully understood by the investigator. Some very recent work has 

indicated that low temperatures particular in December are associated with elevated yield in OSR(7) 

but it not immediately apparent how this translates to a latitudinal effect . Of the major pests 

monitored as part of the crop disease survey Alternaria (‘pod spot’) has a southerly distribution 

approximately matching the stepped profile observed, while incidence of Light Leaf Spot may account 

for the apparent levelling off observed at the highest latitudes within England and Wales. Why these 

disease profiles would manifest as a latitudinal gradient as opposed to the included crop disease 

measures is unclear and may suggest that there are issues in the calculated index used here to indicate 

regional prevalence. As noted previously, cabbage stem flea beetle is another potential candidate for 

driving latitudinal gradients in yield but one for which we currently lack currently lack adequate 

characterisation within the analysed dataset. 

The two measures singled out for further investigation are growth regulators in the context of wheats 

and fungicide usage in the context of OSR. Evidence for increase yield with the use of growth 

regulators is surprising as it conflicts with published findings (31) and may be associated with data 

issues in within the presented analysis. The importance of fungicide usage in OSR supports the idea 

that the latitudinal gradient may be associated with pest distributions and may have interesting 

interactions with the significance of pesticide diversity within this crop.  

In interpreting this work it is important to recognise that there has been no attempt (beyond the 

classification of varieties) to describe the quality of the yields obtained from the sampled holdings. 

No quality information is available in the PUS dataset and any discussion would necessitate expanding 

the collection of datasets under study. Also not discussed in detail are the potential economic drivers, 

especially the differences between economically viable yield and failed crops which may vary from 

location to location and have an impact on, for example decisions around pesticide usage. In this 

analysis we have minimised the role of the economic data from the John Nix handbook as, being a set 

of simple yearly averages, lacked any sort of spatial resolution to distinguish between holdings. As a 

result, these measures proved unimportant in the fitted models. Were more high-resolution data 

around economic conditions and decision making to be available this could have a major impact on 

the structure of the analysis and the conclusions presented.  
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6. Further Work 

6.1. Combination and representation of variables of interest 
The core task outlined in this project was to provide insights into the patterns of attained yield based 

on a subset of complied data regarding UK agriculture. The datasets used in the study are largely 

selected for ease of availability and do not necessarily reflect current theoretical understanding of 

crop yields based on standardised plots. Inevitably there are gaps in the coverage as well as 

outstanding questions regarding how some of the information is used, that remain to be addressed in 

follow on work. Some of these relate to representation and the methodology used for analysis but 

there are also questions around the definition of the questions under study and how they tie into 

policy objectives around crop yield. 

The present analysis is but one of many possible representations of the information available in the 

included dataset and these are by no means comprehensive in terms of what is known regarding the 

UK agricultural system. Interesting data gaps include knowledge of farm practice, e.g. in relation to 

land use payment schemes such as CAP or Environmental Land Management Schemes, as well as many 

of the social-economic aspects and measures of farmer behaviour (for example the profit point 

associated with the yields of focal crops). Some of these can be obtained implicitly by considering 

proxies from existing data (e.g. using the proportion of own seed as a proxy for secondarily sown 

crops) but others require information that has not been complied within this study. Of interest to the 

results represented here are any measures which based on previous analyses of the system might be 

associated with defining the correlates of the low yield population identified in the statistical 

modelling.  

Another area of potential development is in the representation of some of the parameters already 

included in the study. Currently there are several measures, most obviously those arising from the 

crop disease survey and met office, the inclusion of which have necessitated specific decisions about 

how the measures are calculated and how they are associated with the localities under study. It may 

be that revisions to these decisions e.g. based on a more detailed understanding of the relevant 

climatic conditions associated with the focal crops may result in features which better encompass the 

key drivers and lead to greater insights into the distribution of yield on the landscape. Related to this 

is the observation that, particularly for the weather data the measures under study were developed 

with information around drivers in wheat and may have limited relevance when applied to OSR. The 

decisions made here and outlined in the data are largely either driven by a previous round of analysis 

or represent the lead authors best understanding of the farming data landscape and may be revisited 

when on building on the foundations provided here.  

An obvious data extension to be considered is the expanding the data sample beyond the period 2000- 

2010. Extending the temporal window makes any modelling approach more powerful by reducing the 

impact of within sample noise, and potentially opening new possibilities in time series and other 

related analyses. The current restrictions are largely around access and association of the PUS dataset, 

the structure of which was revised after the studied period, however in principal these could be 

overcome, and an expanded set made available (with caveats regarding coverage and comparability 

to the reported period).  
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6.2. Validating and expanding on the effects observed in this 

study 
This study represents one of a small number of examples that attempt to understand landscape level 

yield values from the reported yields of real holdings as opposed to standardised plots. This has 

advantages in terms of the relevance of findings to the agricultural industry, and disadvantages in the 

introduction of a large set of confounding variables, data uncertainty and other sources of noise. 

Because of these intrinsic issues in data representation there is significant value in understanding the 

extent to which identified effects on yield are replicated under the more controlled conditions of 

standardised plots. The key findings described here; in relation to the impact of the diversity of applied 

active compounds and the local climatic conditions (with respect to wheats) and/or the apparent 

latitudinal gradient (with respect to OSR) could be replicated at least in part by existing monitoring 

schemes (e.g. that run annually by the AHDB to generate the set of recommended nabim varieties). 

Integration of information from such trials provides an important validation to the findings discussed 

here and may also help to shed light on differences in the drivers of yield between the highly controlled 

field trails and less structured real holdings, particularly in relation to economic decisions such as 

pesticide application.   

One of the main challenges associated with the statistical interpretation of the fitted models is the 

evidence for a non-conforming population clustered at the low end of the yield distribution. This 

implies a failure of the fitted models to correctly represent the error structure of the dataset and may 

be evidence for heterogeneity in the processes generating the yield values. Given that spatial 

correlation does not appear to be the driver (and there are no clear correlations with any of our 

included measures) we are faced with a choice between excluding the low yielding sites (which 

represents a major loss of information, particularly given that our focus is understanding the causes 

of low yield), or attempting to fit a more complex statistical model which accounts for different 

processes at the extremes of the distribution. One possible framework, although little explored in the 

context of modelling yields, is the idea of censored or truncated regression (sometimes also called 

hurdle models, see (32)) wherein a secondary model process is fitted based on whether or not values 

exceed some predefined threshold (e.g. the average yield required for profitability in a given year) and 

measures can be represented by their effect on either the probability of exceeding the threshold or 

the impacts on the yield once the threshold is overcome. Fitting such an approach is complex and 

experimental and thus considered outside of the scope of the current work but it may represent a 

valuable potential avenue in further understanding the impacts on yield across the UK landscape.   

6.3. Applications of machine learning to agronomic systems, 

method selection and interpretation 
Above we discuss in detail the differences between statistical modelling and common applications of 

machine learning in terms of how they reflect different components of numerical analysis. To 

summarise classical statistics makes restrictive assumptions regarding the relationship between the 

model object and the data (particularly relating to the error structure) but because of this is better 

able to reflect uncertainty and incomplete information about the underlying population. Likewise 

machine learning, at least as commonly applied, is much more flexible in terms of fitting the form of 

the training dataset with respect to the modelled endpoint but consequently can be much more 

challenging to extract knowledge of the system, particularly where the models are fitted as a ‘black 

box’. Moving forward we need to recognise that these different strengths imply differences in the use 

case and sorts of insights which can be generated. There are a number of other areas within agronomy 

data where the techniques and approaches outlined here may serve to provide useful insights for 
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policy (particularly in relation to composition and impacts of different spray regimes) but the key 

remains a clear vision of the study outcomes, strengths of the methods used, and how this ties into 

any proposed intervention or policy change  
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Appendix 1: Dataset construction 

Pesticide Usage Survey 
The primary function of the PUS is consistent monitoring of agrochemical inputs onto the UK 

landscape (here we only use data for England and Wales) with a focus on pesticide application. 

However, due to the way in which the data is compiled, incidental information on yield values is also 

collected at a field level resolution and it is these values (after aggregation, see below) that represent 

the end point for the conducted analyses. It should be noted that there are a large number of samples 

in the PUS which lack recorded yield information (in 2010 this was nearly 30% of farms surveyed [168 

of 564]), which were excluded from the study, and we currently have no way of assessing the extent 

to which this data loss is non-random. Examining only the data from the crops ‘wheat’ and ‘osr’, 

information was compiled In the case of wheat the sample was restricted to the sum of fields explicitly 

label as winter wheat or which have sowing dates during the period September to February (based on 

discussion with the PUS team).  

Data (originally collected at field level resolution) was aggregated to the to the level of the holding, so 

as to be consistent with the geolocation information outlined below. In general, unless otherwise 

noted, measures taken from the PUS are the means for a holding after excluding any inapplicable data. 

Farms within the PUS are identified by a unique hold number assigned for the year of survey. These 

were mapped to the country parish holding scheme (the basis of the June Survey) using supporting 

information provided by the PUS team.  

 

Figure 26. Geographical distribution of farms surveyed in the source PUS data (all years; only sites where yield 

values of focal crops were reported are used in analyses). 
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Additional to previous analyses, we have grouped wheat varieties based on the usage classification 

provided by the National Association of British and Irish Flour Millers (henceforth nabim). This industry 

body is largely responsible for defining the economic usage of wheat varieties in a particular year. For 

simplicity we assessed the historic record of nabim classification during our period of interest and then 

assigned a single classification to each named variety based on the highest quality class (rated 1 to 4) 

obtained during the period. When discussing ‘high quality bread wheats’ we explicitly refer to those 

wheats classified as group 1 under the nabim scheme. When we refer to ‘feed wheats’ this is 

considered to include the sum of varieties listed as nabim group 4 and those which are unclassified 

under the nabim scheme (on the assumption that feed wheat is by far the majority of UK production). 

While initially classified at a variety level for aggregation purposes any mixed fields were assigned to 

the lowest applicable nabim class (as it is not possible within PUS to resolve yield values below the 

level of a single field). Yields are calculated as the division of the total quantity (yield*area) for a nabim 

group divided by the total area field growing the group for a holding.  

Within the PUS applied agrochemicals are broadly classified into usage types, the structure of which 

we follow here (see below). For our core feature set we have also calculated additional aggregated 

statistics as summaries of the overall patterns of pesticide usage. These include, the total (rate of) 

pesticide application, the average number by field of unique active ingredients applied and the 

average number of distinct spray round undertaken, with a round defined as a unique combination of 

a spraying date, method and area of application. Measure included from the PUS in the expanded 

feature set are named and defined as follows: 

• nabinOne_Yield/Feed_wheat_Yield/Unknown_Yield. Average yields for crops belonging to 
the different nabim groups (wheat only). All OSR is collected under Unknown_Yield (a 
convention for the way classes were assigned). Missing data and 0 values are excluded from 
models 

• Area; Total area in ha of fields in PUS. Used to standardise the yield and pesticide use values. 
Usually logged.  

• Drill_value; the mean drilling rate across included fields [Values over 1000 (wheat) or 100 ( 
OSR) are excluded]  

• Prop_Own_seed; the average proportion of Home saved seed sown 

• Mean_Sowing_diff; Average across fields of the difference in days between the recorded date 
of sowing (where given) and the overall  average for the crop in that year; default 0 if no 
sowing data is recorded 

• Mean_Harvest_diff; As Mean_Sowing_diff 

• Primary_Variety; The variety occupies the largest area on the holding (Varieties present at less 
than 20 sites are listed as Unknown) 

• Adjuvant/Desiccant/Foliar feed/Fungicide/ Fungicide/Growth 
regulator/Herbicide/Insecticide/Molluscicide/Repellent/Seed treatment/Sulphur/Desiccant- 
The total amounts of types of pesticides applied on a farm, standardised by Area.  

• Total_Pestcide; sum of the (standardised) pesticides used 

• Mean_Spray_Rounds; the average across fields of the number of spray rounds undertaken.  

• Count_Compounds: the average across included fields of the number of distinct active 
ingredients in the applied pesticides 

• Count_Inseticide_Rounds: the average across included fields of the number of distinct spray 
rounds including at least one member of the group Insecticide 

 

DEFRA June Survey 
The June survey assesses (among other measures) land use, livestock numbers and the agricultural 

workforce for a sample of English and Welsh holdings each year. These samples are typically 
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interpreted in the context of a decadal full census of land use, which for our dataset occurred in 2000 

and 2010. The June survey is particularly relevant as the source of the geolocatable information 

(presented as eastings and northings of the centroids of the holding) which were used to fit the spatial 

component of the models outlined below. Due to subtle variations in the structure of the survey year 

on year extracted information the combinations of questions used to construct different measures 

vary across the dataset [in brackets below].  Before inclusion in modelling all variables, apart from 

Cereals_Concentration were standardised to the value of the Land_Farmed_by_Farmer_June. Include 

measures are defined as  

• Land_for_Wheat; Land cultivated by wheat [a1] 

• Land_for_OSR: Land cultivated by winter oil seed rape [a24, sum(a241,a242)] 

• Total_Open_Veg; Total Vegetables and Salad Grown in the Open [b99] 

• Total_NS_Bulbs_Flowers; Total Hardy Nursery Stock and Bulbs and Flowers[d99] 

• Total_Grass_SE; Total grassland, Set-aside and Other types of land [g99, g98] 

• Area_Holding_June; Total area of Holding [h1, sum(h2, h3,h4,h5,h11)-sum(h8,h9)] 

• Land_Owned_June; Land Owned [h2] 

• Land_Farmed_by_Farmer_June; Area Farmed by Farmer [h10]  

• Land_Rented_June; Area rented for 364 days or less [h11, missing from 2000 and 2002] 

• Land_Letout_June Area you let out for 364 days or less [h12, missing from 2000 and 2002] 

• N_Pigs; Number of Pigs [l98] 

• N_SheepLambs Number of sheep/lambs [m98] 

• N_Labour Number of labourers employed[q98] 

• N_CowsCalves Number of cows/calves [k98, k299] 

• Cereals_Concentration The proportion of the total holding given over to production of wheat 
or osr [(a1+a24)/h10] 
 

DEFRA Crop disease Survey 
The crop disease survey, of which oilseed rape and wheat are components, is undertaken annually for 

the purposes of assessing the prevalence of various commercially sensitive pests across the UK. For 

winter wheat, data is collected from approximately 300 crops sampled randomly from a 

geographically stratified list of sites during the medium milk development stage. Each sample 

represents the average of 25 tillers and assessment is focused around widespread fungal diseases e.g. 

brown rust (Puccinia triticina), Septoria tritici, and yellow rust (Puccinia striiformis). Oils seed rape 

values are calculated from a sample of 100 crops, spatially stratified, and with each record comprising 

30 crops sampled at three points within the season; mid-leaf production, early stem extension, and at 

pod ripening. The key focus of this survey is Alternaria, Phoma, Sclerotinia, and light leaf spot 

(Pyrenopeziza brassicae). 

One of the challenges for incorporating the crop disease survey information into our combined dataset 

is that there is very limited overlap between the sites sampled for the PUS and/or June survey and 

those used for the crop disease sample. Therefore, is it necessary to construct an index reflecting the 

regional prevalence of the disease (a potential driver of yield), based on the information available in 

the crop disease survey. To further add to the complexity, different varieties sampled in the crop 

disease survey have known differences in their resistance to the various crop diseases and so provide 

different levels of information regarding the regional prevalence of the pest organism. In the absence 

of clear guidelines, our approach here has been largely experimental and may be revised in 

subsequent work. We have taken information on the definition of variety resistance from the 

publications of the AHDB and used this to approximate the log linear relationship between disease 
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prevalence and  the assigned resistance category (approximate slope of 0.2 disease units)16.Using this 

relationship we have then standardised the reported prevalence (taken that the mean of prevalence 

of the disease at different growth stages or on different leaves if applicable) in the samples taken in 

the crop disease survey based on the reported crop resistance level and used this as the basis for a 

regional index of disease prevalence. To map this index to our sites as identified in the PUS our dataset 

includes two different approaches, firstly assigning each site an index value based on the crop disease 

sample with the shortest strait line distance (ties resolved arbitrarily; this methodology follows that 

established in the previous round of analysis), and secondly by assigning the index value of a site as 

the average of all crop disease samples with a radius of 50km (this our preferred approach and the 

basis of the disease prevalence measures included in the core feature set). 

Variables as named in dataset (referenced are column heading in the original crop disease survey 

dataset supplied): 

• Wheat  

o Mapped to closest sample:  

▪ "corected_yrust_inc", mean of yrust_lf1_inc and yrust_lf2_inc scaled to the 

varietal yrate 

▪ "corected_brust_inc", mean of brust_lf1_inc and brust_lf2_inc scaled to the 

varietal brate 

▪ "corected_trrust_inc", mean of tritici_lf1_incidenc and tritici_lf2_incidence 

scaled to the varietal trate 

o Mapped as mean within 50km (all likewise scaled): 

▪ 'Average_Corrected_yrust_index', 

▪ 'Average_Corrected_Tritici_index', 

▪ 'Average_Corrected_brust_index' 

• OSR   

o Mapped to closest sample:  

▪ corected_phoma_inc; mean of incidence of phoma_summer and phoma_spring 

scaled (as above) to the varietal res_sk 

▪ corected_lls_inc; mean of incidence of plants_spring_lls scaled to the varietal 

res_lls 

▪ pod_Alternaria* 

▪ stems_with_alternaria* 

▪ stems_sclerotinia* 

o Mapped as mean within 50km(all likewise scaled):: 

▪ Average_Corrected_phoma_index', 

▪ 'Average_Corrected_lls_index', 

▪ 'Average_pod_alternaria',* 

▪ 'Average_stems_with_alternaria',* 

▪ 'Average_stems_sclerotinia* 

*There is no resistance rating reported for these measures and hence they are reported as their raw 

values 

 
16 This value was estimated based on the relationship function given for wheat resistance and observed disease 
prevalence in https://cereals.ahdb.org.uk/media/408807/Understanding-RL-disease-ratings.pdf  

https://cereals.ahdb.org.uk/media/408807/Understanding-RL-disease-ratings.pdf
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Meteorological Office Climatic data 
Climatic data is taken from geo-located weather stations across the UK and consists of daily records 

of average temperature, rainfall, wind speed and humidity. For each weather station, data were 

aggregated to the ‘pre-frost’ (defined as the period as the period from July to December of the year 

prior to harvest for the purposed on rainfall and humidity or as July of the year prior to harvest to 

February of the year of harvest in the case of temperature) and ‘pre-harvest‘ periods (the latter 

defined as the period from June to September in the year of harvest) and average values calculated17. 

The variables included in the modelling are based on previously identified potential drivers of wheat 

yields (see previous phase of analysis) and are named below. For assembly purposes, the values 

associated with a holding were taken to be those of the closest weather station based on strait line 

distance calculated on their respective eastings and northings. 

• mean.rain.prefrost 

• mean.temp.prefrost 

• mean.RH.prefrost  

• mean.wind.preharvest 

• mean.rain.preharvest 

National Soil Map 
During the calculation of the reported analysis, administrative constraints resulted in a lack of direct 

access to data previously used to define soil types based on the DEFRA national soil map. The 

presented values are therefore approximations based on the records constructed as part of the 

previous round of analysis. Underlying the presented measures are nice soil measurements 

representing fertility [ "low", "moderate", "moderate to high“], drainage ["freely draining", "impeded 

drainage" ,"naturally wet“] and soil texture ["loamy", "peaty“, "sandy“]. These are presented as the 

unique values by postcode district and assembled to the dataset via postcode information provided 

from the previous round of analysis.  

Compared to other variables included in this study the various soil measures are expected to be highly 

correlated with one another, reflecting for example the tendency for impeded drainage and low 

fertility in peaty soil types. To address this issue Principal component Analysis (PCA) was applied to 

the soil data prior to modelling, thus reducing the number of included variables to a set of 

uncorrelated linear axes representing successively smaller quantities of the underlying variation in the 

dataset.  

PCA analysis was conducted individually on the wheat and oil seed rape datasets and the resulting 

axes are visualised on Figure 28 and Figure 30 respectively (visualised using R package factoextra (33)). 

 
17 This approach originates from preliminary work by Mojtahed and Budge and reflects discussions regarding the 
relevant periods for crop growth for wheat. Alternative schemes based on, for example on sowing date, are 
possible in the context of the compiled data but have not been explored within the present analysis.  
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Figure 27 Scree plot of the proportion of variance associated with each calculated axis of the PCA of soil variables 

applied to wheat 

 

Figure 28 PCA of Soil variables for wheat displayed as a biplot. The alignment of the underlying measures with 

respect to the calculated principal components are shown by the blue arrows. The black dots represent the position 

of the recorded data with respect to the calculated axes. Plot shown is for PC1 (x axis) and PC2 (y-axis).  

For wheat the first principal component (comprising 32% of  observed variance) is primarily associated 

with the transition from freely draining (low scores) verses both classes of wet soils (high scores), with 

also a strong contribution for scores along the low fertility axis and the distinction between loamy (low 

scoring) as opposed to peaty soils (high scoring). PC2 (28% of variance) is most closely correlated with 

the trend towards sandy soil textures (high scoring) with also a strong contribution in the distinction 

between soils with impeded drainage and moderate fertility (both associated the lower scoring 

localities).  For ease of use we have restricted the core data set to only include these first two 

components which are by far the most important in terms of explaining overall variance (Total 60% of 

the overall variance in soil types is explained by this representation; Figure 27) 



 

52 
 

 

Figure 29 Scree plot of the proportion of variance associated with each calculated axis of the PCA of soil variables 

applied to oil seed rape  

 

 

Figure 30 PCA of Soil variables for oil seed rape displayed as a biplot. The alignment of the underlying measures 

with respect to the calculated principal components are shown by the blue arrows. The black dots represent the 

position of the recorded data with respect to the calculated axes. PC1 (x axis) and PC2 (y-axis) are shown on the 

upper plot, while PC2 (x-axis) and PC3 (y-axis) are shown in the lower plot.  
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For OSR records the results of PCA show subtle distinctions from that of wheat, particularly in the 

orientation of some variable with respect to PC2. Here PC1 (34% of variance) can largely be interpreted 

as the dissention between low fertility and freely draining soils on the one hand (low values) and 

moderate fertility soils with impeded drainage on the other. PC2 (28% of variance) is closely aligned 

to the distinction between peaty and loamy soils with naturally wet soils being strongly associated 

with high peat content. Also included in the models for this crop PC3 (12% of variance) can be 

interpreted as a continuum between naturally wet and loamy soils (high scoring) and relatively dry 

soils with a high sand content. Together these variables represent approximately 73% of the variation 

observed in the underlying dataset.  

Economic Data 
The economic data was extracted from John Nix farm management pocketbooks from 2000 to 2010 

on a biennial basis matching the years of the arable pesticide use survey. The main economic variables 

are the prices of crops and costs of production such as pesticide costs and land rent.  The data 

complied is not associated with localities and instead is reflective of overall average values across a 

year. Due to this low-resolution incorporation of the economic measures, use of this data was 

restricted to the Expanded feature set. Measures included are:  

• average_Winter_Wheat_Price_feed; Winter wheat price for feed 

• average_Winter_Wheat_Price_milling; Winter wheat price for milling 

• average_Winter_Wheat; Average between milling and feed price 

• average_OSR_price; Average oilseed rape price 

• heribicide_price_cereal ; Average among several active ingredient types (e.g. general, under-

sown crops, blackgrass, cleavers, wild oats, etc.) 

• growth_regulator_price_cereal ; Average among several active ingredients (e.g. 

Chlormequat, Choline Chloride, Imazaquin, Mepiquat Chloride, etc.) 

• fungicide_price_cereal; Average among several active ingredients (e.g. Azoxystrobin, 

fenpropimorph, epoxiconazole, tebuconazole, etc.) 

• Aphicide_price_cereal; Average among several active ingredients (e.g. Cypermethrin, 

deltamethrin, pirimicarb, chlorpyriphos) 

• slug_killer_price_cereal ; Average among several active ingredients (e.g. metaldehyde, 

methiocarb) 

• heribicide_price_OSR; Average among several active ingredients (e.g. propyzamide, trifluralin, 

metazachlor) 

• insecticide_price_OSR; Average among several active ingredients (e.g. deltamethrin, 

triflularin, metazachlor) 

• fungicide_price_OSR; Average among several active ingredients (e.g. Improdione, 

Tebuconazole, Flusilazde, metconazole) 

• dessicant_OSR ; Glyphosate 

• land_prices_ha;Average price between 4 quarters of CALP/RICS farmland price index- 

Covering sales of 5ha and above 

• rent_ha_full_agri; Full Agricultural Tenancies 

• rent_ha_farm_business ; Farm business Tenancy rent (for 1 year and over) 

• average_Rent;  Average between Farm Business Tenancy and Full Agricultural Tenancy 
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Appendix 2: Visualising the shape of numeric parameter effects in 

statistical modelling  
Relationships from statistical modelling for significant parameters of core feature set of nabim One 

varieties of wheat 

 

  

  

A) B) 

C) D) 

E) F) 
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Figure 31 Plot of the prediction interval for the numeric significant parameters identified from statistical modelling 

of the core feature set for nabim One varieties of wheat. Dark points are the mean effect of the parameter 

estimated from the model with the shaded region showing the (95%) confidence interval on this estimate. The 

area within the lines represents the 95% prediction interval given the overall error on the model (i.e. the area in 

which 95% of the true values are expected to lie). The observed data is shown as points, with values associated 

with a large negative residual (subpopulation of non-conforming localities) shown in blue (see Figure 9). Effects 

are shown in the following order (matching that in Table 1) A) Area, B) Land farmed by farmer, C) Proportion own 

seed, D)Count compounds, E) Total pesticide, F) Mean rain pre-frost, G) Latitude.  

  

G) 
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Relationships for significant parameters of core feature set from statistical modelling of feed varieties 

of wheat 

  

  

   

A) 
B) 

C) D) 

E) F) 
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Figure 32 Plot of the prediction interval for the numeric significant parameters identified from statistical modelling 

of the core feature set for feed varieties of wheat. Dark points are the mean effect of the parameter estimated 

from the model with the shaded region showing the (95%) confidence interval on this estimate. The area within 

the lines represents the 95% prediction interval given the overall error on the model (i.e. the area in which 95% of 

the true values are expected to lie). The observed data is shown as points, with values associated with a large 

negative residual (subpopulation of non-conforming localities) shown in blue (see Figure 16). Effects are shown 

in the following order (matching that in Table 2) A) Area, B) Proportion own seed, C) Mean spray rounds, 

D)Count compounds,  E) Mean humidity pre-frost, F) Mean rain pre-frost, G) Second principal component of soil 

factors H) latitude 

  

  

G) H) 
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Relationships for significant parameters of core feature set from statistical modelling of OSR

 

 

 

A) B) 

C) D) 

E) 

Figure 33 Plot of the prediction interval for the 

numeric significant parameters identified from 

statistical modelling of the core feature set for 

OSR. Dark points are the mean effect of the 

parameter estimated from the model with the 

shaded region showing the (95%) confidence 

interval on this estimate. The area within the lines 

represents the 95% prediction interval given the 

overall error on the model (i.e. the area in which 

95% of the true values are expected to lie). The 

observed data is shown as points, with values 

associated with a large negative residual 

(subpopulation of non-conforming localities) shown 

in blue (see Figure 26). Effects are shown in the 

following order (matching that in Table 3) A) 

Proportion own seed, B) Third principal component 

of soil factors, C) Latitude, D)Total Pesticide,  E) 

Count Compounds 

 


