Standard chemical background

Herbicides are substances (usually chemical) used to control weeds in a variety of situations including agriculture, horticulture and managed landscapes.

Herbicides are classified according to their mode of action (MOA) - this is the precise biochemical mechanism in which the herbicide targets and kills the weed.

The 'active ingredient' of the herbicide is the specific herbicidal compound that has the phytotoxic effect and this is formulated with a variety of other ingredients (including other active substances, surfactants, buffers, adjuvants e.t.c) to make a final product which is given a trade name by the herbicide manufacturer.

With any herbicide product you will find an associated product label which explains how to use the product safely and legally.

This page provides an overview of herbicides including how they are classified and used. Please link any pages or projects relating to herbicide use to this topic page.  Some widely used herbicides (e.g glyphosate) also have their own topic page. Other related topics on FarmPEP include herbicide resistance,  bioherbicides, broad leaved weeds and grass weeds.

 

Classification of herbicides

Herbicides are classified according to the Herbicide Resistance Action Committee (HRAC) system. This is a system of numbered groups, each number referring to a specific mode of action. Within each group active ingredients are further grouped according to their chemical families.

The 2 most common herbicide groups are:

Group 1: Acetyl-CoA carboxylase (ACCase) inhibitors

  • ACCase is an enzyme involved in fatty acid synthesis. Herbicides in this group inhibit this important metabolic process in plants.
  • Their are 3 main chemical families in this group, referred to as FOPs (e.g clodinafop) , DIMs (e.g cycloxydim)  and DENs (e.g pinoxaden).

Group 2: Acetolactate synthase (ALS)  inhibitors

  • ALS is an enzyme involved in the biosynthesis of branch-chain amino acids (valine, leucine and isoleucine). ALS inhibiting herbicides block this process meaning the plant cannot make vital proteins it needs to survive.
  • There are several chemical families in this group including the sulfonylureas (e.g mesosulfuron-methyl),  Imidazolinones (e.g imazamox) and Triazolopyrimidines (e.g florasulam).

You can use the HRAC Global herbicide classification look-up (link provided at the bottom of this topic) to find all the different groups of herbicides, chemical families and active ingredients of herbicides.

 

Types of herbicides

Selective vs non-selective (broad-spectrum)

  • Selective herbicides only work on a specific range of weeds whereas non-selective herbicides can control a wider variety of weeds.
  • For example ACCase inhibitors (HRAC group 1) selectively control grass weed species (as many broadleaf species have a naturally tolerant ACCase enzyme) whereas the herbicide glyphosate (HRAC Group 9) can target both broadleaf and grass species.

Contact vs Systemic (translocated)

  • Contact herbicides kill only the part of the weed that the herbicide contacts directly whereas systemic herbicides are absorbed by the weed at the point of application and are then circulated by the vascular system, thus reaching other tissues.
  • Contact herbicides tend to be more rapidly acting but may allow re-growth if certain tissues such as the roots are unaffected by the herbicide. Systemic herbicides tend to take longer to exert their effects on the weed but will kill the entire plant. 
  • For example glufosinate (HRAC Group 10) is only effective where it comes into contact with the weed whereas glyphosate (HRAC Group 9) is absorbed by the leaves and then moves and accumulates in the plant roots.

Residual vs non-residual

  • Residual herbicides will remain in the soil in an active form for longer periods of time, allowing longer lasting control of weeds whereas non-residual herbicides are rapidly broken down in the soil and do not have lasting effects.
  • For example flazasulfuron (HRAC Group 2 -sulfonylurea) may provide up to half a year residual activity whereas glyphosate (HRAC Group 9) has either no or very little soil residual activity as it loses herbicidal properties upon binding with soil particles. 

Pre-emergent vs post-emergent

  • Pre-emergent herbicides are applied to soil to prevent any weeds from germinating and have residual effects whereas post-emergent herbicides are applied to kill weeds once they have already germinated and emerged and tend not to have residual effects.
  • For example the pre-emergence herbicide  triallate (Group 15) is applied to soil where it prevents grass weeds from germinating whereas fluazifop (HRAC Group 1) is applied to grass weeds after they have emerged where it is absorbed through the leaves.

 

 

Useful resources:

Herbicide products authorised for use in the UK: Health and safety executive pesticides register 

Herbicide classification: HRAC Global Herbicide Classification look-up

Related Organisations

Content below is from across the PEP community and is not necessarily endorsed by Stewards or by PEP

Connected Content

Crop protection refers to practices and measures employed in agriculture to safeguard crops from both biotic (pests, diseases and weeds) and abiotic (environmental factors) stresses. They key goal of crop production is to maintain crop productivity, health and quality whilst minimising yield losses.

Herbicide resistance is the inherited ability of a weed to survive a rate of herbicide which would be lethal to a member of the normal population. It can develop over time based on repeated selection pressure imposed on the weed. This selection pressure changes the population from susceptible to resistant. Herbicide resistance is becoming an increasing problem in UK agriculture, in both grass weeds and broad-leaf weeds. See also the general topic on herbicides.

Insecticides are a type of agrochemical used to kill, harm or deter insects that either directly infect cultivated plants/animals or that are carriers of disease. In agricultural settings, insecticides may be used in both arable and livestock husbandry situations. The classification of insecticides can occur in various ways: via their biochemical mode of action, their mode of penetration or on the basis of their chemistry. They can also come in various formulations and delivery-systems such as sprays, gels or baits.

This Topic doesn't yet have a Stewarded summary, but connected groups, content and organisations show below. Click the 'Ask to Join' button if you would like to be a Steward for this Topic and provide a summary of current knowledge and recommend useful resources, organisations, networks and projects. "Like" this Topic if you would like to see it prioritised for providing a wikipedia style summary.

'Integrated Weed Management (IWM) systems in the agroecology context; new challenges.' NIAB, Cambridge, UK 24th - 26th of May 2023

Broad-leaved weeds are a varied group of weeds that can grow and cause significant problems in arable fields in the UK. Some of the most common broad-leaved weeds in the UK include: Common Chickweed (Stellaria media) , Scentless Mayweed (Tripleurospermum inodorum), Common poppy (Papaver rhoeas), Charlock (Sinapis arvensis L.), Fat-hen (Chenopodium album L.), Common groundsel (Senecio vulgaris), Docks (Rumex spp) and Creeping thistle (Cirsium arvense). See also related topics of: grass-weeds, herbicides, herbicide resistance and integrated weed management.

Grass weeds are a major challenge in UK agriculture and are often highly competitive in arable crops. Some of the most common grass weeds in the UK include: Black-grass (Alopecurus myosuroides), Italian rye-grass (Lolium multiflorum), Brome (Bromus sp.), wild-oats (Avena sp.), Couch grass (Elytrigia repens), annual meadow grass (Poa annua) and Rat's-tail Fescue (Vulpia myuros). You can find specific topic pages for black-grass and brome. See also related topics of: broad-leaved weeds, herbicides, herbicide resistance and integrated weed management

IWM involves using numerous weed control methods to try and manage a weed problem sustainably. Whilst herbicides can still be used as part of an IWM approach, a major aim is to reduce reliance on them by also incorporating methods including, cultural, mechanical, biological, thermal and genetic control. A combination of such approaches can allow for optimal control of a specific weed problem. Related topics on FarmPEP include herbicides and herbicide resistance. You can also view the topic pages on grass weeds and broad-leaved weeds which provide examples of suitable control methods.

Written By James Clarke - ADAS Research Director

Published in 1999, this report forms part of the work associated with the Integrated Farming systems (IFS) project (1992-1998). The aim of the study was to determine whether there is any difference between the riskiness of IFS and conventional systems in terms of spring spraying opportunities and its effects on production and the environment.. Herbicides were chosen as the 'role model'. The study looks at spraying opportunities and requirements at IFS sites (Hampshire, Cambridgeshire x 2, Herefordshire, Yorkshire and Midlothian. It seeks to apply the rotations to 2 different sized farms of 200 and 350 hectares and finally looks at the risk implications of each situation.  

Write whatever you want here - this is the main section. You can add links, add pictures and embed videos. To paste text from elsewhere use CTRL+Shift+V to paste without formatting. Add videos by selecting 'Full HTML' below, copying the 'embed html' from the source page (eg Youtube), clicking 'Source' above and pasting where you want the video to appear.
You can upload an image here. It can be jpg, jpeg, gif or png format.
Upload requirements

You can upload a file here, such as a pdf report, or MS Office documents, Excel spreadsheet or Powerpoint Slides.

Upload requirements
Authors Order
Add Authors here - you can only add them if they already exist on PEP. Just start writing their name then select to add it. To add multiple authors click the 'Add another item' button below.

Please ensure that you have proof-read your content. Pages are not edited further once submitted and will go live immediately.

Configure the meta tags below.

Use tokens to avoid redundant meta data and search engine penalization. For example, a 'keyword' value of "example" will be shown on all content using this configuration, whereas using the [node:field_keywords] automatically inserts the "keywords" values from the current entity (node, term, etc).

Browse available tokens.

Simple meta tags.

The text to display in the title bar of a visitor's web browser when they view this page. This meta tag may also be used as the title of the page when a visitor bookmarks or favorites this page, or as the page title in a search engine result. It is common to append '[site:name]' to the end of this, so the site's name is automatically added. It is recommended that the title is no greater than 55 - 65 characters long, including spaces.
A brief and concise summary of the page's content, preferably 150 characters or less. Where as the description meta tag may be used by search engines to display a snippet about the page in search results, the abstract tag may be used to archive a summary about the page. This meta tag is no longer supported by major search engines.

Meta tags that might not be needed by many sites.

Geo-spatial information in 'latitude; longitude' format, e.g. '50.167958; -97.133185'; see Wikipedia for details.
Geo-spatial information in 'latitude, longitude' format, e.g. '50.167958, -97.133185'; see Wikipedia for details.
Robots
A comma-separated list of keywords about the page. This meta tag is used as an indicator in Google News.
Highlight standout journalism on the web, especially for breaking news; used as an indicator in Google News. Warning: Don't abuse it, to be used a maximum of 7 times per calendar week!
This meta tag communicates with Google. There are currently two directives supported: 'nositelinkssearchbox' to not to show the sitelinks search box, and 'notranslate' to ask Google not to offer a translation of the page. Both options may be added, just separate them with a comma. See meta tags that Google understands for further details.
Used to rate content for audience appropriateness. This tag has little known influence on search engine rankings, but can be used by browsers, browser extensions, and apps. The most common options are general, mature, restricted, 14 years, safe for kids. If you follow the RTA Documentation you should enter RTA-5042-1996-1400-1577-RTA
Indicate to search engines and other page scrapers whether or not links should be followed. See the W3C specifications for further details.
Tell search engines when to index the page again. Very few search engines support this tag, it is more useful to use an XML Sitemap file.
Control when the browser's internal cache of the current page should expire. The date must to be an RFC-1123-compliant date string that is represented in Greenwich Mean Time (GMT), e.g. 'Thu, 01 Sep 2016 00:12:56 GMT'. Set to '0' to stop the page being cached entirely.

The Open Graph meta tags are used to control how Facebook, Pinterest, LinkedIn and other social networking sites interpret the site's content.

The Facebook Sharing Debugger lets you preview how your content will look when it's shared to Facebook and debug any issues with your Open Graph tags.

The URL of an image which should represent the content. The image must be at least 200 x 200 pixels in size; 600 x 316 pixels is a recommended minimum size, and for best results use an image least 1200 x 630 pixels in size. Supports PNG, JPEG and GIF formats. Should not be used if og:image:url is used. Note: if multiple images are added many services (e.g. Facebook) will default to the largest image, not specifically the first one. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly.
The URL of an video which should represent the content. For best results use a source that is at least 1200 x 630 pixels in size, but at least 600 x 316 pixels is a recommended minimum. Object types supported include video.episode, video.movie, video.other, and video.tv_show. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically.
A alternative version of og:image and has exactly the same requirements; only one needs to be used. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly.
The secure URL (HTTPS) of an image which should represent the content. The image must be at least 200 x 200 pixels in size; 600 x 316 pixels is a recommended minimum size, and for best results use an image least 1200 x 630 pixels in size. Supports PNG, JPEG and GIF formats. Multiple values may be used, separated by a comma. Note: Tokens that return multiple values will be handled automatically. This will be able to extract the URL from an image field if the field is configured properly. Any URLs which start with "http://" will be converted to "https://".
The type of image referenced above. Should be either 'image/gif' for a GIF image, 'image/jpeg' for a JPG/JPEG image, or 'image/png' for a PNG image. Note: there should be one value for each image, and having more than there are images may cause problems.
The date this content was last modified, with an optional time value. Needs to be in ISO 8601 format. Can be the same as the 'Article modification date' tag.
The date this content was last modified, with an optional time value. Needs to be in ISO 8601 format.
The date this content will expire, with an optional time value. Needs to be in ISO 8601 format.

A set of meta tags specially for controlling the summaries displayed when content is shared on Twitter.

Notes:
  • no other fields are required for a Summary card
  • Photo card requires the 'image' field
  • Media player card requires the 'title', 'description', 'media player URL', 'media player width', 'media player height' and 'image' fields,
  • Summary Card with Large Image card requires the 'Summary' field and the 'image' field,
  • Gallery Card requires all the 'Gallery Image' fields,
  • App Card requires the 'iPhone app ID' field, the 'iPad app ID' field and the 'Google Play app ID' field,
  • Product Card requires the 'description' field, the 'image' field, the 'Label 1' field, the 'Data 1' field, the 'Label 2' field and the 'Data 2' field.
A description that concisely summarizes the content of the page, as appropriate for presentation within a Tweet. Do not re-use the title text as the description, or use this field to describe the general services provided by the website. The string will be truncated, by Twitter, at the word to 200 characters.
By default Twitter tracks visitors when a tweet is embedded on a page using the official APIs. Setting this to 'on' will stop Twitter from tracking visitors.
The URL to a unique image representing the content of the page. Do not use a generic image such as your website logo, author photo, or other image that spans multiple pages. Images larger than 120x120px will be resized and cropped square based on longest dimension. Images smaller than 60x60px will not be shown. If the 'type' is set to Photo then the image must be at least 280x150px. This will be able to extract the URL from an image field if the field is configured properly.
The MIME type for the media contained in the stream URL, as defined by RFC 4337.